词条 | Hadean zircon | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
Hadean zircon has very low abundance around the globe because of recycling of material by plate tectonics. When the rock at the surface is buried deep in the Earth it is heated and can recrystallise or melt.[1] In the Jack Hills, Australia, scientists obtained a relatively comprehensive record of Hadean zircon crystals in contrast to other locations. The Jack Hills rocks are from the Archean eon, about 3.6 billion years old. However, the zircon crystals there are older than the rocks that contain them. Many investigations have been carried out to find the absolute age and properties of zircon, for example the isotope ratios, mineral inclusions, and geochemistry of zircon. The characteristics of Hadean zircons show early Earth history and the mechanism of Earth's processes in the past.[1] Based on the properties of these zircon crystals, many different geological models were proposed. BackgroundImportanceDeeper understanding of Earth historyThe geological history of the Hadean eon of early earth is poorly known due to the lack of rock record older than 4.02 Ga (giga-annum or billion years).[1][2][3] Most scientists accept that the plate recycling mechanism has melted almost all pieces of Earth's crust.[1] However, some tiny parts of the crust have not been melted, as some rare Hadean zircon grains included in much younger host rock were discovered.[1] The examination of Hadean detrital or inherited grains of zircon can give evidence of geophysical conditions of the early earth.[3] Scientific contributionSince there is no strong evidence depicting the early Earth's true environment, many models are generated to explain early Earth history.[1] The high value of Hadean heat production and impact flux proved that continental crust did not exist, which is very different from the modern process. In the absence of large amount of undistributed data and within the constraints of analytical methods, calculation on geophysics and planetary science has been rapidly developed to explore this new area of knowledge.[1] AbundanceLess than 1% of zircons over four billion years old have been detected around the world.[1] The probability of discovering at least a single over four billion-year-old zircon is very low.[1] The abundance of over four billion-year-old zircon in the Jack Hills is anomalously high for most Archean quartzites and thus abundances probabilities of other spots are extremely low (between 0.2-0.02%).[4]{{Failed verification|date=December 2017}} By adopting uranium-lead dating (U-Pb) together with other analytical methods, more geochemical information can be obtained. Only 3% out of over 200,000 detritial zircon grains dated by U-Pb analysis are over four billion years old.[5][6] TypesDue to different content of uranium and trace element concentration, four clusters of zircons are identified as below [7]
Low crystallisation temperatures and trace element characteristics are the two major characteristics that differentiate mantle derived zircon or oceanic crust-derived zircon.[8][9][10] Lunar and meteoritic zircons are unique because of their REE signature for example, lack of a cerium anomaly.[11] The crystallization temperature ranges from 900 to 1100 °C. In contrast, terrestrial Hadean zircons are restricted to 600 to 780 °C.[12] Hadean Jack Hills zircon has a wide range of oxygen fraction comparing to meteoritic zircons.[12] No extraterrestrial zircons were found in any terrestrial locality. The textural characteristics like the growth zoning and inclusion mineralogy shows that Hadean zircon from the Jack Hills all come from igneous sources.[13][14] PropertiesThe unspecified samples used for analyses below were Jack Hills zircon in Australia because of the high abundances and data available. Age distributionU-Pb dating in the U-Pb zircon system has long been viewed as the crustal geochronometer because zircon is chemically resistant and enriched in U and Th compared to the daughter product Pb.[16] Trace element and isotopic composition of zircon is important to determine the crystallisation environment.[16]Results from detrital zircons from the Erawondoo Hill discovery site conglomerate[17][18] generally show the zircons to have a bimodal age distribution with major peaks at ca. 3.4 and 4.1 Ga. However, zircon is sensitive to radiation damage and can degrade into amorphous material.[19] The Hadean zircon with original uranium concentrations greater than 600 ppm is challenged by the effect of post-crystallization alteration. Isotope geochemistryStable isotope data, indicating that the original host rocks to the zircon related to a significant amount of material formed on or near the Earth's surface and subsequently transferred to a middle- to lower-crustal level where they melted to generate the host magmas from which zircon crystallised.[5][13]
Mineral inclusionsThe development of textural criteria for identifying primary inclusions[32] opens up possibilities for recognising zircons' changing provenance with time and investigating their post-depositional alteration history. There are two common inclusion assemblages that are consistent with their forming in "I-type" (hornblende, quartz, biotite, plagioclase, apatite, ilmenite) and "S-type" (quartz, K-feldspar, muscovite, monazite) granitoids.[32] Dominated by quartz with less abundant K-feldspar, plagioclase, muscovite, biotite, and phosphates, that are interpreted to have formed under relatively low geothermal gradient similar to that pertaining to modern subduction zones.[14][32]
Zircon geochemistryBy analysing the content of zircon, some zircon show the presence of titanium, rare earth minerals, lithium, aluminium and carbon. Certain ratio and normal distribution give evidence of zircon's origin and the source of magma.
Analytic methodIon microprobe analysisIon microprobe (or secondary ion mass spectrometry, SIMS) and uranium-thorium-lead geochronology are two common methods to measure isotope in specific time interval.[49][50]Highly precise in situ SIMS measurements of oxygen isotopes[51] and OH/O ratios, laser-ablation inductively-coupled mass spectrometry (LA-ICP-MS) determination of hafnium isotopes,[52][53] and atom-probe tomography.[54] LA-ICP-MS is the most common method to date using isotopes but it lacks capacity to measure 204Pb. Therefore, there is a possibility that the occurrences of single zircons over 4 billion years old could be due to inclusion of non-radiogenic Pb. U-Pb dating, delta 18O and Ti measurements can be tested by CAMECA ims 1270 ion microprobe.[51] Epoxy are applied on the sample. A flat surface of sample is needed to conduct an analysis.[122] U-Pb dating and T measurement uses a primary O− beam with low intensity (10-15 nA). U-Pb age standard AS3 was used for dating studies. The concentration of Ti can be determined based on analysis of Jack Hills zircon[55] and NIST610 glass. Electron microprobe analysisFor inclusions investigation, JEOL 8600 electron microprobe analyzer (EPMA) were used to chemically analyze zircon.[7] It is used to analyze the chemical composition of material. Electron beams are emitted to the mineral's surface and blow off ions and estimate the abundance of the elements within a very small sized sample. Many isotopes can be measured at once in this analysis for example Ti and Li.[44] Occurrence{{clear}}
Proposed mechanisms for forming Hadean Jack Hills zirconsPlate tectonic theory is widely accepted for the generation of crust. However, it's still an unknown how the early Earth was formed. With the Hadean rock record, most of the scientists concluded that the belief of a hellish early Earth devoid of ocean is wrong.[7] Scientists have constructed different models to explain the thermal history in early history including continental growth model,[72] Icelandic rhyolites,[73] intermediate igneous rocks, mafic igneous rocks, sagduction,[74] impact melt,[75] heat pipe tectonics,[76] terrestrial KREEP[77] and multi-stage scenarios. The most famous one is continental growth model which is similar to the modern tectonic dynamics.[7] Relatively low crystallisation temperature and some are enriched in heavy oxygen, contain inclusion similar to modern crustal processes and show evidence of silicate differentiation at ~4.5 Ga.[7] Early terrestrial hydrosphere, early felsic crust in which granitoids were produced and later weathered under high water activity conditions and even the possible existence of plate boundary interactions.[7] References1. ^1 2 {{Cite journal|last=Bowring;Williams|first=Samuel A;Ian S.|date=1999|title=Priscoan (4.00±4.03 Ga) orthogneisses from northwestern Canada|url=|journal=Contrib Mineral Petrol (1999) 134: 3±16|volume=|pages=|via=}} 2. ^Willbold, Mojzsis, Chen, & Elliott. (2015). Tungsten isotope composition of the Acasta Gneiss Complex. Earth and Planetary Science Letters, 419, 168-177. 3. ^1 Roth, Bourdon, Mojzsis, Touboul, Sprung, Guitreau, & Blichert-Toft. (2013). Inherited 142Nd anomalies in Eoarchean protoliths. Earth and Planetary Science Letters, 361, 50-57. 4. ^Harrison, T., Blichert-Toft, J., Mueller, W., Albarede, F., Holden, P., & Mojzsis, S. (2005). Heterogeneous Hadean hafnium; evidence of continental crust at 4.4 to 4.5 Ga. Science, 310(5756), 1947-1950. 5. ^1 2 3 Peck, Valley, Wilde, & Graham. (2001). Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochimica Et Cosmochimica Acta, 65(22), 4215-4229. 6. ^Hiess, Nutman, Bennett, & Holden. (2006). Ti zircon thermometry applied to metamorphic and igneous systems. Geochimica Et Cosmochimica Acta, 70(18), A250. 7. ^1 2 3 4 5 6 7 8 9 10 11 12 Harrison, T. (2009). The Hadean Crust: Evidence from >4 Ga Zircons. Annual Review of Earth and Planetary Sciences, 37, 479-505. 8. ^Grimes, C., John, B., Kelemen, P., Mazdab, F., Wooden, J., Cheadle, M., . . . Schwartz, J. (2007). Trace element chemistry of zircons from oceanic crust; a method for distinguishing detrital zircon provenance. Geology (Boulder), 35(7), 643-646. 9. ^Lassiter, Byerly, Snow, & Hellebrand. (2014). Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth and Planetary Science Letters, 403, 178-187. 10. ^Coogan, L., & Hinton, R. (2006). Do the trace element compositions of detrital zircons require Hadean continental crust? Geology (Boulder),34(8), 633-636. 11. ^Martin, Duchêne, Deloule, & Vanderhaeghe. (2006). Oxygen isotopes, REE and U–Pb behaviour during metamorphic zircon formation. Geochimica Et Cosmochimica Acta, 70(18), A394. 12. ^1 Watson, E., & Harrison, T. (2005). Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723), 841-844. 13. ^1 Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res 135:251–279 14. ^1 2 3 Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from > 4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456:493–496 15. ^Holden P, Lanc P, Ireland TR, Harrison TM, Foster JJ, Bruce ZP (2009) Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100 000 grains. Int J Mass Spectrom 286:53–63 16. ^1 Meinhold, G., Morton, A., Fanning, C., & Whitham, A. (2011). U–Pb SHRIMP ages of detrital granulite-facies rutiles: Further constraints on provenance of Jurassic sandstones on the Norwegian margin. Geological Magazine, 148(3), 473-480. 17. ^Crowley, Bowring, Shen, Wang, Cao, & Jin. (2006). U–Pb zircon geochronology of the end-Permian mass extinction. Geochimica Et Cosmochimica Acta, 70(18), A119. 18. ^{{cite journal|last1=Iizuka|first1=Tsuyoshi|last2=Yamaguchi|first2=Akira|last3=Haba|first3=Makiko K.|last4=Amelin|first4=Yuri|last5=Holden|first5=Peter|last6=Zink|first6=Sonja|last7=Huyskens|first7=Magdalena H.|last8=Ireland|first8=Trevor R.|title=Timing of global crustal metamorphism on Vesta as revealed by high-precision U–Pb dating and trace element chemistry of eucrite zircon|journal=Earth and Planetary Science Letters|date=January 2015|volume=409|pages=182–192|doi=10.1016/j.epsl.2014.10.055}} 19. ^Bengtson, Ewing, & Becker. (2012). Corrigendum to "He diffusion and closure temperatures in apatite and zircon: A density functional theory investigation" [Geochim. Cosmochim. Acta 86 (2012) 228–238]. Geochimica Et Cosmochimica Acta, 98, 202. 20. ^Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206 21. ^Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73:7110–7126 22. ^1 Abbott, S., Harrison, T., Schmitt, A., & Mojzsis, S. (2012). A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13486-92. 23. ^1 Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11 24. ^1 2 Kinny PD, Compston W, Williams IS (1991) A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim Cosmochim Acta 55:849–859 25. ^1 2 Amelin YV, Lee DC, Halliday AN, Pidgeon RT (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–55 26. ^1 2 Blichert-Toft J, Albarède F (2008) Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet Sci Lett 265:686702 27. ^1 2 Turner, W., Heaman, L., & Creaser, R. (2003). Sm-Nd fluorite dating of Proterozoic low-sulfidation epithermal Au-Ag deposits and U-Pb zircon dating of host rocks at Mallery Lake, Nunavut, Canada. Canadian Journal Of Earth Sciences, 40(12), 1789-1804. 28. ^1 2 3 4 5 Turner G, Harrison TM, Holland G, Mojzsis SJ, Gilmour J (2004) Xenon from extinct 244Pu in ancient terrestrial zircons. Science 306:89–91 29. ^1 Tang, Rudnick, Mcdonough, Bose, & Goreva. (2017). Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries. Earth and Planetary Science Letters, 474, 110-119. 30. ^1 Trail, D., Cherniak, D., Watson, J., Harrison, E., Weiss, B., & Szumila, T. (2016). Li zoning in zircon as a potential geospeedometer and peak temperature indicator. Contributions to Mineralogy and Petrology, 171(3), 1-15. 31. ^1 2 3 Cimino, R., Rasmussen, & Neimark. (2013). Communication: Thermodynamic analysis of critical conditions of polymer adsorption. The Journal of Chemical Physics, 139(20), The Journal of Chemical Physics, 28 November 2013, Vol.139(20). 32. ^1 2 Bell, Boehnke, & Harrison. (2017). Corrigendum to "Applications of biotite inclusion composition to zircon provenance determination" [Earth Planet. Sci. Lett. 473 (2017) 237–246]. Earth and Planetary Science Letters, 475, 267. 33. ^1 Hopkins M, Harrison TM, Manning CE (2010) Constraints on Hadean geodynamics from mineral inclusions in > 4 Ga zircons. Earth Planet Sci Lett 298:367–376 34. ^1 White RW, Powell RW, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO– K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153 35. ^1 Rasmussen B, Fletcher IR, Muhling JR, Gregory CJ, Wilde SA (2011) Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills Australia: Implications for the Hadean Earth. Geology 39:1143–1146 36. ^1 Trail D, Thomas JB, Watson EB (2011b) The incorporation of hydroxyl into zircon. Am Mineral 96:60–67 37. ^1 2 3 Abdel-Rahman, A. (1996). Discussion on the Comment on Nature of Biotites in Alkaline, Calc-alkaline and Peraluminous Magmas. 37(5), 1031-1035. 38. ^1 Nutman, A., Mojzsis, S., & Friend, C. (1997). Recognition of >=3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochimica Et Cosmochimica Acta, 61(12), 2475-2484. 39. ^1 Rosing, M. (1999). C-13-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from west Greenland. Science, 283(5402), 674-676. 40. ^1 2 3 {{cite journal|last1=Cherniak|first1=D.J.|last2=Watson|first2=E.B.|date=August 2007|title=Ti diffusion in zircon|journal=Chemical Geology|volume=242|issue=3-4|pages=470–483|doi=10.1016/j.chemgeo.2007.05.005}} 41. ^1 2 3 {{cite journal|last1=Tailby|first1=N.D.|last2=Walker|first2=A.M.|last3=Berry|first3=A.J.|last4=Hermann|first4=J.|last5=Evans|first5=K.A.|last6=Mavrogenes|first6=J.A.|last7=O’Neill|first7=H.St.C.|last8=Rodina|first8=I.S.|last9=Soldatov|first9=A.V.|date=February 2011|title=Ti site occupancy in zircon|journal=Geochimica et Cosmochimica Acta|volume=75|issue=3|pages=905–921|doi=10.1016/j.gca.2010.11.004|last10=Rubatto|first10=D.|last11=Sutton|first11=S.R.}} 42. ^1 {{cite journal|last1=Ferry|first1=J. M.|last2=Watson|first2=E. B.|date=1 October 2007|title=New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers|url=10.1007/s00410-007-0201-0|journal=Contributions to Mineralogy and Petrology|language=en|volume=154|issue=4|pages=429–437|doi=10.1007/s00410-007-0201-0|issn=0010-7999}} 43. ^1 Hopkins, M., Harrison, T., & Manning, C. (2012). Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia; implications for the Hadean Earth; discussion. Geology (Boulder), 40(12), E281-e281. 44. ^1 2 3 4 Trail D, Cherniak DJ, Watson EB, Harrison TM, Weiss BP, Szumila I (2016) Li zoning in zircon as a potential geospeedometer and peak temperature indicator. Contrib Mineral Petrol 171:1–15 45. ^1 2 3 Alahakoon, Burrows, Howes, Karunaratne, Smith, & Dobedoe. (2010). Fully densified zircon co-doped with iron and aluminium prepared by sol–gel processing. Journal of the European Ceramic Society, 30(12), 2515-2523. 46. ^Trail D, Tailby, N, Wang Y, Harrison TM, Boehnke P (2016) Al in zircon as evidence for peraluminous melts and recycling of pelites from the Hadean to modern times. Geochem Geophys Geosystem 47. ^1 Marty B, Alexander CMD, Raymond SN (2013) Primordial origins of Earth’s carbon. Rev Mineral Geochem 75:149–181 48. ^1 Dasgupta R (2013) Ingassing storage and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229 49. ^{{cite journal|last1=Clement|first1=C.F|last2=Harrison|first2=R.G|title=The charging of radioactive aerosols|journal=Journal of Aerosol Science|date=July 1992|volume=23|issue=5|pages=481–504|doi=10.1016/0021-8502(92)90019-R}} 50. ^{{cite journal|last1=Gebauer|first1=Dieter|last2=Williams|first2=Ian S.|last3=Compston|first3=William|last4=Grünenfelder|first4=Marc|title=The development of the Central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 3.84 b.y. old detrital zircons|journal=Tectonophysics|date=January 1989|volume=157|issue=1-3|pages=81–96|doi=10.1016/0040-1951(89)90342-9}} 51. ^1 {{cite journal|last1=Schulze|first1=Daniel J.|last2=Harte|first2=Ben|last3=Valley|first3=John W.|last4=Brenan|first4=James M.|last5=Channer|first5=Dominic M. De R.|title=Extreme crustal oxygen isotope signatures preserved in coesite in diamond|journal=Nature|date=1 May 2003|volume=423|issue=6935|pages=68–70|doi=10.1038/nature01615}} 52. ^{{cite journal|last1=Hawkesworth|first1=Chris|last2=Kemp|first2=Tony|title=A zircon perspective on the evolution of the continental crust: Insights from combined Hf and O isotopes|journal=Geochimica et Cosmochimica Acta|date=August 2006|volume=70|issue=18|pages=A236|doi=10.1016/j.gca.2006.06.476}} 53. ^{{cite journal|last1=Taylor|first1=D. J.|last2=McKeegan|first2=K. D.|last3=Harrison|first3=T. M.|last4=Young|first4=E. D.|title=Early differentiation of the lunar magma ocean . New Lu-Hf isotope results from Apollo 17|journal=Geochimica et Cosmochimica Acta Supplement|date=1 June 2009|volume=73|pages=A1317|bibcode=2009GeCAS..73R1317T|issn=0046-564X}} 54. ^{{cite journal|last1=Valley|first1=John W.|last2=Cavosie|first2=Aaron J.|last3=Ushikubo|first3=Takayuki|last4=Reinhard|first4=David A.|last5=Lawrence|first5=Daniel F.|last6=Larson|first6=David J.|last7=Clifton|first7=Peter H.|last8=Kelly|first8=Thomas F.|last9=Wilde|first9=Simon A.|last10=Moser|first10=Desmond E.|last11=Spicuzza|first11=Michael J.|title=Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography|journal=Nature Geoscience|date=23 February 2014|volume=7|issue=3|pages=219–223|doi=10.1038/ngeo2075}} 55. ^1 {{cite journal|author1=Valery K Brel|author2= Namig S. Pirkuliev|author3=Nikolai S. Zefirov|year=2001|title=Chemistry of xenon derivatives. Synthesis and chemical properties|journal=Russian Chemical Reviews|volume=70|issue=3|pages=231–264|issn=0036-021X}} 56. ^Maas, Kinny, Williams, Froude, & Compston. (1992). The Earth's oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica Et Cosmochimica Acta, 56(3), 1281-1300. 57. ^Pidgeon, & Nemchin. (2006). Comparative age distributions and internal structures of Archaean zircons from quartzites from Mt Narryer and the Jack Hills, Western Australia. Geochimica Et Cosmochimica Acta, 70(18), A493. 58. ^Nelson, Robinson, & Myers. (2000). Complex geological histories extending for ≥4.0 Ga deciphered from xenocryst zircon microstructures. Earth and Planetary Science Letters, 181(1), 89-102. 59. ^Wyche S (2007) Evidence of Pre-3100 Ma Crust in the Youanmi and South West Terranes, and Eastern Goldfields Superterrane, of the Yilgarn Craton. Dev Precambrian Geol 15:113–123 60. ^Thern, & Nelson. (2012). Detrital zircon age structure within ca. 3Ga metasedimentary rocks, Yilgarn Craton: Elucidation of Hadean source terranes by principal component analysis. Precambrian Research,214-215, 28-43. 61. ^Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16 62. ^Stern RA, Bleeker W (1998) Age of the world’s oldest rocks refined using Canada’s SHRIMP the Acasta gneiss complex Northwest Territories Canada. Geosci Canada 25:27–31 63. ^Mojzsis SJ, Cates NL, Caro G, Trail D, Abramov O, Guitreau M, Blichert-Toft J, Hopkins MD, Bleeker W (2014) Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss. Geochim Cosmochim Acta 133:68–96 64. ^Mojzsis, S., & Harrison, T. (2002). Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science, 298(5595), 917. 65. ^Wilke, Schmidt, Dubrail, Appel, Borchert, Kvashnina, & Manning. (2012). Zircon solubility and zirconium complexation in H2O Na2O SiO2±Al2O3 fluids at high pressure and temperature. Earth and Planetary Science Letters, 349-350, 15-25. 66. ^Fei, Guangchun, Zhou, Xiong, Duo, Ji, Zhou, Yu, Wen, Chun-Qi, Wen, Quan, . . . Liu, Hongfei. (2015). Zircon U-Pb age and geochemical characteristics of ore-bearing granodiorite porphyry in the Duobuza porphyry copper deposit, Tibet. Journal of the Geological Society of India, 86(2), 223-232. 67. ^Diwu Chunrong, Sun Yong, Wang Hongliang, & Dong Zhengchan. (2010). A mineral record of 4.0 Ga metamorphism; evidence of metamorphic zircon xenocryst from western north Qinling orogenic belt. Geochimica Et Cosmochimica Acta, 74(12), A237-A237. 68. ^Cui, Pei-Long, Sun, Jing-Gui, Sha, De-Ming, Wang, Xi-Jing, Zhang, Peng, Gu, A-Lei, & Wang, Zhong-Yu. (2013). Oldest zircon xenocryst (4.17 Ga) from the North China Craton. International Geology Review,55(15), 1902-1908. 69. ^Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261:9–19 70. ^Nadeau S, Chen W, Reece J, Lachhman D, Ault R, Faraco MTL, Fraga LM, Reis NJ, Betiollo LM (2013) Guyana: the Lost Hadean crust of South America? Braz J Geol 43:601–606 71. ^Paquette JL, Barbosa JSF, Rohais S, Cruz SC, Goncalves P, Peucat JJ, Leal ABM, Santos-Pinto M, Martin H (2015) The geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals discovered in NE Brazil and NW Argentina. Precambrian Res 271:49–55 72. ^Sohma, T. (1999). Study of the Indian Shield: A Tectonic Model of Continental Growth. Gondwana Research, 2(2), 311-312. 73. ^Haraldur Sigurdsson. (1977). Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer. Nature, 269(5623), 25-28. 74. ^François, Philippot, Rey, & Rubatto. (2014). Burial and exhumation during Archean sagduction in the East Pilbara Granite-Greenstone Terrane. Earth and Planetary Science Letters, 396, 235-251. 75. ^Plescia, J., & Cintala, M. (2012). Impact melt in small lunar highland craters. Journal of Geophysical Research: Planets, 117(E12), N/a. 76. ^Moore, W., & Webb, A. (2013). Heat-pipe Earth. Nature, 501(7468), 501-5. 77. ^Longhi, & Auwera. (1993). The monzonorite-anorthosite connection: The petrogenesis of terrestrial KREEP. Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M, 897-898. 2 : Zircon|Hadean |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。