词条 | Hessian polyhedron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, {{CDD|3node_1|3|3node|3|3node}}, in . It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual. Coxeter named it after Ludwig Otto Hesse for sharing the Hessian configuration or (94123), 9 points lying by threes on twelve lines, with four lines through each point.[1] Its complex reflection group is 3[3]3[3]3 or {{CDD|3node|3|3node|3|3node}}, order 648, also called a Hessian group. It has 27 copies of {{CDD|3node|3|3node}}, order 24, at each vertex. It has 24 order-3 reflections. Its Coxeter number is 12, with degrees of the fundamental invariants 3, 6, and 12, which can be seen in projective symmetry of the polytopes. The Witting polytope, 3{3}3{3}3{3}3, {{CDD|3node_1|3|3node|3|3node|3|3node}} contains the Hessian polyhedron as cells and vertex figures. It has a real representation as the 221 polytope, {{CDD|nodes_10r|3ab|nodes|split2|node|3|node}}, in 4-dimensional space, sharing the same 27 vertices. The 216 edges in 221 can be seen as the 72 3{} edges represented as 3 simple edges. CoordinatesIts 27 vertices be given coordinates in : for (λ, μ = 0,1,2). (0,ωλ,−ωμ) (−ωμ,0,ωλ) (ωλ,−ωμ,0) where . As a Configuration
Its symmetry by 3[3]3[3]3 or {{CDD|3node|3|3node|3|3node}}, order 648.[2] The configuation matrix for 3{3}3{3}3 is:[3] The number of k-face elements (f-vectors) can be read down the diagonal. The number of elements of each k-face are in rows below the diagonal. The number of elements of eac k-figure are in rows above the diagonal.
ImagesThese are 8 symmetric orthographic projections, some with overlapping vertices, shown by colors. Here the 72 triangular edges are drawn as 3-separate edges.
Related complex polyhedra
The Hessian polyhedron can be seen as an alternation of {{CDD|node_1|4|3node|3|3node}}, {{CDD|node_h|4|3node|3|3node}} = {{CDD|label-33|nodes_10ru|split2|node|label3}}. This double Hessian polyhedron has 54 vertices, 216 simple edges, and 72 {{CDD|node_1|4|3node}} faces. Its vertices represent the union of the vertices {{CDD|3node_1|3|3node|3|3node}} and its dual {{CDD|3node|3|3node|3|3node_1}}. Its complex reflection group is 3[3]3[4]2, or {{CDD|3node|3|3node|4|node}}, order 1296. It has 54 copies of {{CDD|3node|3|3node}}, order 24, at each vertex. It has 24 order-3 reflections and 9 order-2 reflections. Its coxeter number is 18, with degrees of the fundamental invariants 6, 12, and 18 which can be seen in projective symmetry of the polytopes. Coxeter noted that the three complex polytopes {{CDD|3node_1|3|3node|3||3node}}, {{CDD|node_1|4|3node|3||3node}}, {{CDD|3node_1|3|3node|4|node}} resemble the real tetrahedron ({{CDD|node_1|3|node|3|node}}), cube ({{CDD|node_1|4|node|3|node}}), and octahedron ({{CDD|node_1|3|node|4|node}}). The Hessian is analogous to the tetrahedron, like the cube is a double tetrahedron, and the octahedron as a rectified tetrahedron. In both sets the vertices of the first belong to two dual pairs of the second, and the vertices of the third are at the center of the edges of the second.[4] Its real representation 54 vertices are contained by two 221 polytopes in symmetric configurations: {{CDD|nodes_10r|3ab|nodes|split2|node|3|node}} and {{CDD|nodes_01r|3ab|nodes|split2|node|3|node}}. Its vertices can also be seen in the dual polytope of 122. ConstructionThe elements can be seen in a configuration matrix:
Images
Rectified Hessian polyhedron
The rectification, {{CDD|3node|3|3node_1|3|3node}} doubles in symmetry as a regular complex polyhedron {{CDD|3node_1|3|3node|4|node}} with 72 vertices, 216 3{} edges, 54 3{3}3 faces. Its vertex figure is 3{4}2, and van oss polygon 3{4}3. It is dual to the double Hessian polyhedron.[5] It has a real representation as the 122 polytope, {{CDD|nodes|3ab|nodes|split2|node|3|node_1}}, sharing the 72 vertices. Its 216 3-edges can be drawn as 648 simple edges, which is 72 less than 122's 720 edges.
ConstructionThe elements can be seen in two configuration matrices, a regular and quasiregular form.
References1. ^Coxeter, Complex Regular polytopes, p.123 2. ^Coxeter Regular Convex Polytopes, 12.5 The Witting polytope 3. ^Coxeter, Complex Regular polytopes, p.132 4. ^Coxeter, Complex Regular Polytopes, p.127 5. ^Coxeter, H. S. M., Regular Complex Polytopes, second edition, Cambridge University Press, (1991). p.30 and p.47
1 : Polytopes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。