请输入您要查询的百科知识:

 

词条 19 equal temperament
释义

  1. History and use

  2. Notation

  3. Interval size

  4. Scale diagram

      Modes    Ionian Mode (Major Scale)    Dorian Mode    Phrygian Mode    Lydian Mode    Mixolydian Mode    Aeolian Mode (Natural Minor Scale)    Locrian Mode  

  5. See also

  6. References

  7. Further reading

  8. External links

In music, 19 equal temperament, called 19 TET, 19 EDO ("Equal Division of the Octave"), or 19 ET, is the tempered scale derived by dividing the octave into 19 equal steps (equal frequency ratios). Each step represents a frequency ratio of {{radic|2|19}}, or 63.16 cents ({{audio|1 step in 19-et on C.mid|Play}}).

The fact that traditional western music maps unambiguously onto this scale makes it easier to perform such music in this tuning than in many other tunings.

19 EDO is the tuning of the syntonic temperament in which the tempered perfect fifth is equal to 694.737 cents, as shown in Figure 1 (look for the label "19 TET"). On an isomorphic keyboard, the fingering of music composed in 19 EDO is precisely the same as it is in any other syntonic tuning (such as 12 EDO), so long as the notes are “spelled properly” — that is, with no assumption that the sharp below matches the flat immediately above it (enharmonicity).

History and use

Division of the octave into 19 equal-width steps arose naturally out of Renaissance music theory. The ratio of four minor thirds to an octave (648:625 or 62.565 cents – the “greater diesis”) was almost exactly a nineteenth of an octave. Interest in such a tuning system goes back to the 16th century, when composer Guillaume Costeley used it in his chanson Seigneur Dieu ta pitié of 1558. Costeley understood and desired the circulating aspect of this tuning.

In 1577, music theorist Francisco de Salinas in effect proposed it. Salinas discussed {{frac|1|3}} comma meantone, in which the fifth is of size 694.786 cents. The fifth of 19 EDO is 694.737 cents, which is less than a twentieth of a cent narrower: imperceptible and less than tuning error. Salinas suggested tuning nineteen tones to the octave to this tuning, which fails to close by less than a cent, so that his suggestion is effectively 19 EDO.

In the 19th century, mathematician and music theorist Wesley Woolhouse proposed it as a more practical alternative to meantone temperaments he regarded as better, such as 50 EDO.[2]

The composer Joel Mandelbaum wrote his Ph.D. thesis[4] on the properties of the 19 EDO tuning, and advocated for its use. In his thesis, he argued that it is the only viable system with a number of divisions between 12 and 22, and furthermore that the next smallest number of divisions resulting in a significant improvement in approximating just intervals is the 31 tone equal temperament.[5] Mandelbaum and Joseph Yasser have written music with 19 EDO.[6] Easley Blackwood has stated that 19 EDO makes possible "a substantial enrichment of the tonal repertoire".[7]

Notation

19-EDO can be represented with the traditional letter names and system of sharps and flats by treating flats and sharps as distinct notes; in 19-EDO only B{{music|#}} is enharmonic with C{{music|b}}, and E{{music|#}} with F{{music|b}}. This article will use that notation.

Interval size

Here are the sizes of some common intervals and comparison with the ratios arising in the harmonic series; the difference column measures in cents the distance from an exact fit to these ratios.

For reference, the difference from the perfect fifth in the widely used 12 TET is 1.955 cents flat, the difference from the major third is 13.686 cents sharp, the minor third is 15.643 cents flat, and the (lost) harmonic minor seventh is 31.174 cents sharp.

Step (cents)63636363636363636363636363636363636363
Note nameAA{{music|sharp}}B{{music|flat}}BB{{music|sharp}}
C{{music|flat}}
CC{{music|sharp}}D{{music|flat}}DD{{music|sharp}}E{{music|flat}}EE{{music|sharp}}
F{{music|flat}}
FF{{music|sharp}}G{{music|flat}}GG{{music|sharp}}A{{music|flat}}A
Interval (cents)0631261892533163794425055686326957588218849471011107411371200
Interval nameSize (steps)Size (cents)MidiJust ratioJust (cents)MidiError (cents)
Octave191200 {{0}}{{0}}2:11200 {{0}}{{0}}0{{0}}
Septimal major seventh181136.8427:141137.04−{{0}}0.20
Major seventh171073.6815:81088.27−14.58
Minor seventh161010.539:51017.60−{{0}}7.07
Harmonic minor seventh15{{0}}947.37Harmonic seventh on C.mid|Play
}}
7:4{{0}}968.83−21.46
Septimal major sixth15{{0}}947.3712:7{{0}}933.13 +14.24
Major sixth14{{0}}884.215:3{{0}}884.36−{{0}}0.15
Minor sixth13{{0}}821.058:5{{0}}813.69 +{{0}}7.37
Septimal minor sixth12{{0}}757.8914:9{{0}}764.92−{{0}}7.02
Perfect fifth11{{0}}694.7411 steps in 19-et on C.mid|Play
}}
3:2{{0}}701.96Just perfect fifth on C.mid|Play
}}
−{{0}}7.22
Greater tridecimal tritone10{{0}}631.5813:9{{0}}{{0}}636.62−{{0}}5.04
Greater septimal tritone, diminished fifth10{{0}}631.5810 steps in 19-et on C.mid|Play
}}
10:7{{0}}{{0}}617.49Greater septimal tritone on C.mid|Play
}}
+14.09
Lesser septimal tritone, augmented fourth{{0}}9{{0}}568.429 steps in 19-et on C.mid|Play
}}
7:5{{0}}582.51−14.09
Lesser tridecimal tritone{{0}}9{{0}}568.4218:13{{0}}563.38 +{{0}}5.04
Perfect fourth{{0}}8{{0}}505.268 steps in 19-et on C.mid|Play
}}
4:3{{0}}498.04Just perfect fourth on C.mid|Play
}}
+{{0}}7.22
Tridecimal major third{{0}}7{{0}}442.1113:10{{0}}454.12−10.22
Septimal major third{{0}}7{{0}}442.117 steps in 19-et on C.mid|Play
}}
9:7{{0}}435.08Septimal major third on C.mid|Play
}}
+{{0}}7.03
Major third{{0}}6{{0}}378.956 steps in 19-et on C.mid|Play
}}
5:4{{0}}386.31Just major third on C.mid|Play
}}
−{{0}}7.36
Inverted 13th harmonic{{0}}6{{0}}378.9516:13{{0}}359.47 +19.48
Minor third{{0}}5{{0}}315.795 steps in 19-et on C.mid|Play
}}
6:5{{0}}315.64Just minor third on C.mid|Play
}}
+{{0}}0.15
Septimal minor third{{0}}4{{0}}252.637:6{{0}}266.87Septimal minor third on C.mid|Play
}}
−14.24
5|4}}-tone{{0}}4{{0}}252.6315:13{{0}}247.74 +{{0}}4.89
Septimal whole tone{{0}}4{{0}}252.634 steps in 19-et on C.mid|Play
}}
8:7{{0}}231.17Septimal major second on C.mid|Play
}}
+21.46
Whole tone, major tone{{0}}3{{0}}189.479:8{{0}}203.91Major tone on C.mid|Play
}}
−14.44
Whole tone, minor tone{{0}}3{{0}}189.473 steps in 19-et on C.mid|Play
}}
10:9{{0}}{{0}}182.40Minor tone on C.mid|Play
}}
+{{0}}7.07
Greater tridecimal {{2/3}}-tone{{0}}2{{0}}126.3213:12{{0}}138.57−12.26
Lesser tridecimal {{2/3}}-tone{{0}}2{{0}}126.3214:13{{0}}128.30−{{0}}1.98
Septimal diatonic semitone{{0}}2{{0}}126.3215:14{{0}}119.44Septimal diatonic semitone on C.mid|Play
}}
+{{0}}6.88
Diatonic semitone, just{{0}}2{{0}}126.3216:15{{0}}111.73Just diatonic semitone on C.mid|Play
}}
+14.59
Septimal chromatic semitone{{0}}1{{0}}{{0}}63.161 step in 19-et on C.mid|Play
}}
21:20{{0}}{{0}}84.46−21.31
Chromatic semitone, just{{0}}1{{0}}{{0}}63.1625:24{{0}}{{0}}70.67Just chromatic semitone on C.mid|Play
}}
−{{0}}7.51
Septimal third-tone{{0}}1{{0}}{{0}}63.161 step in 19-et on C.mid|Play
}}
28:27{{0}}{{0}}62.96 +{{0}}0.20

Scale diagram

Because 19 is a prime number, repeating any fixed interval in this tuning system cycles through all possible notes; just as one may cycle through 12 EDO on the circle of fifths, since a fifth is 7 semitones, and number 7 does not divide 12 evenly (7 is coprime to 12).

Modes

Ionian Mode (Major Scale)

Key SignatureNumber of

Sharps

Key SignatureNumber of

Flats

C MajorCDEFGAB0
G MajorGABCDEF♯1
D MajorDEF♯GABC♯2
A MajorABC♯DEF♯G♯3
E MajorEF♯G♯ABC♯D♯4
B MajorBC♯D♯EF♯G♯A♯5C𝄫 MajorC𝄫D𝄫E𝄫F𝄫G𝄫A𝄫B𝄫14
F♯ MajorF♯G♯A♯BC♯D♯E♯6G𝄫 MajorG𝄫A𝄫B𝄫C𝄫D𝄫E𝄫F♭13
C♯ MajorC♯D♯E♯F♯G♯A♯B♯7D𝄫 MajorD𝄫E𝄫F♭G𝄫A𝄫B𝄫C♭12
G♯ MajorG♯A♯B♯C♯D♯E♯F𝄪8A𝄫 MajorA𝄫B𝄫C♭D𝄫E𝄫F♭G♭11
D♯ MajorD♯E♯F𝄪G♯A♯B♯C𝄪9E𝄫 MajorE𝄫F♭G♭A𝄫B𝄫C♭D♭10
A♯ MajorA♯B♯C𝄪D♯E♯F𝄪G𝄪10B𝄫 MajorB𝄫C♭D♭E𝄫F♭G♭A♭9
E♯ MajorE♯F𝄪G𝄪A♯B♯C𝄪D𝄪11F♭ MajorF♭G♭A♭B𝄫C♭D♭E♭8
B♯ MajorB♯C𝄪D𝄪E♯F𝄪G𝄪A𝄪12C♭ MajorC♭D♭E♭F♭G♭A♭B♭7
F𝄪 MajorF𝄪G𝄪A𝄪B♯C𝄪D𝄪E𝄪13G♭ MajorG♭A♭B♭C♭D♭E♭F6
C𝄪 MajorC𝄪D𝄪E𝄪F𝄪G𝄪A𝄪B𝄪14D♭ MajorD♭E♭FG♭A♭B♭C5
A♭ MajorA♭B♭CD♭E♭FG4
E♭ MajorE♭FGA♭B♭CD3
B♭ MajorB♭CDE♭FGA2
F MajorFGAB♭CDE1
C MajorCDEFGAB0

Dorian Mode

Key SignatureNumber of

Sharps

Key SignatureNumber of

Flats

D DorianDEFGABC0
A DorianABCDEF♯G1
E DorianEF♯GABC♯D2
B DorianBC♯DEF♯G♯A3
F♯ DorianF♯G♯ABC♯D♯E4
C♯ DorianC♯D♯EF♯G♯A♯B5D𝄫 DorianD𝄫E𝄫F𝄫G𝄫A𝄫B𝄫C𝄫14
G♯ DorianG♯A♯BC♯D♯E♯F♯6A𝄫 DorianA𝄫B𝄫C𝄫D𝄫E𝄫F♭G𝄫13
D♯ DorianD♯E♯F♯G♯A♯B♯C♯7E𝄫 DorianE𝄫F♭G𝄫A𝄫B𝄫C♭D𝄫12
A♯ DorianA♯B♯C♯D♯E♯F𝄪G♯8B𝄫 DorianB𝄫C♭D𝄫E𝄫F♭G♭A𝄫11
E♯ DorianE♯F𝄪G♯A♯B♯C𝄪D♯9F♭ DorianF♭G♭A𝄫B𝄫C♭D♭E𝄫10
B♯ DorianB♯C𝄪D♯E♯F𝄪G𝄪A♯10C♭ DorianC♭D♭E𝄫F♭G♭A♭B𝄫9
F𝄪 DorianF𝄪G𝄪A♯B♯C𝄪D𝄪E♯11G♭ DorianG♭A♭B𝄫C♭D♭E♭F♭8
C𝄪 DorianC𝄪D𝄪E♯F𝄪G𝄪A𝄪B♯12D♭ DorianD♭E♭F♭G♭A♭B♭C♭7
G𝄪 DorianG𝄪A𝄪B♯C𝄪D𝄪E𝄪F𝄪13A♭ DorianA♭B♭C♭D♭E♭FG♭6
D𝄪 DorianD𝄪E𝄪F𝄪G𝄪A𝄪B𝄪C𝄪14E♭ DorianE♭FG♭A♭B♭CD♭5
B♭ DorianB♭CD♭E♭FGA♭4
F DorianFGA♭B♭CDE♭3
C DorianCDE♭FGAB♭2
G DorianGAB♭CDEF1
D DorianDEFGABC0

Phrygian Mode

Key SignatureNumber of

Sharps

Key SignatureNumber of

Flats

E PhrygianEFGABCD0
B PhrygianBCDEF♯GA1
F♯ PhrygianF♯GABC♯DE2
C♯ PhrygianC♯DEF♯G♯AB3
G♯ PhrygianG♯ABC♯D♯EF♯4
D♯ PhrygianD♯EF♯G♯A♯BC♯5E𝄫 PhrygianE𝄫F𝄫G𝄫A𝄫B𝄫C𝄫D𝄫14
A♯ PhrygianA♯BC♯D♯E♯F♯G♯6B𝄫 PhrygianB𝄫C𝄫D𝄫E𝄫F♭G𝄫A𝄫13
E♯ PhrygianE♯F♯G♯A♯B♯C♯D♯7F♭ PhrygianF♭G𝄫A𝄫B𝄫C♭D𝄫E𝄫12
B♯ PhrygianB♯C♯D♯E♯F𝄪G♯A♯8C♭ PhrygianC♭D𝄫E𝄫F♭G♭A𝄫B𝄫11
F𝄪 PhrygianF𝄪G♯A♯B♯C𝄪D♯E♯9G♭ PhrygianG♭A𝄫B𝄫C♭D♭E𝄫F♭10
C𝄪 PhrygianC𝄪D♯E♯F𝄪G𝄪A♯B♯10D♭ PhrygianD♭E𝄫F♭G♭A♭B𝄫C♭9
G𝄪 PhrygianG𝄪A♯B♯C𝄪D𝄪E♯F𝄪11A♭ PhrygianA♭B𝄫C♭D♭E♭F♭G♭8
D𝄪 PhrygianD𝄪E♯F𝄪G𝄪A𝄪B♯C𝄪12E♭ PhrygianE♭F♭G♭A♭B♭C♭D♭7
A𝄪 PhrygianA𝄪B♯C𝄪D𝄪E𝄪F𝄪G𝄪13B♭ PhrygianB♭C♭D♭E♭FG♭A♭6
E𝄪 PhrygianE𝄪F𝄪G𝄪A𝄪B𝄪C𝄪D𝄪14F PhrygianFG♭A♭B♭CD♭E♭5
C PhrygianCD♭E♭FGA♭B♭4
G PhrygianGA♭B♭CDE♭F3
D PhrygianDE♭FGAB♭C2
A PhrygianAB♭CDEFG1
E PhrygianEFGABCD0

Lydian Mode

Key SignatureNumber of

Sharps

Key SignatureNumber of

Flats

F LydianFGABCDE0
C LydianCDEF♯GAB1
G LydianGABC♯DEF♯2
D LydianDEF♯G♯ABC♯3
A LydianABC♯D♯EF♯G♯4
E LydianEF♯G♯A♯BC♯D♯5F𝄫 LydianF𝄫G𝄫A𝄫B𝄫C𝄫D𝄫E𝄫14
B LydianBC♯D♯E♯F♯G♯A♯6C𝄫 LydianC𝄫D𝄫E𝄫F♭G𝄫A𝄫B𝄫13
F♯ LydianF♯G♯A♯B♯C♯D♯E♯7G𝄫 LydianG𝄫A𝄫B𝄫C♭D𝄫E𝄫F♭12
C♯ LydianC♯D♯E♯F𝄪G♯A♯B♯8D𝄫 LydianD𝄫E𝄫F♭G♭A𝄫B𝄫C♭11
G♯ LydianG♯A♯B♯C𝄪D♯E♯F𝄪9A𝄫 LydianA𝄫B𝄫C♭D♭E𝄫F♭G♭10
D♯ LydianD♯E♯F𝄪G𝄪A♯B♯C𝄪10E𝄫 LydianE𝄫F♭G♭A♭B𝄫C♭D♭9
A♯ LydianA♯B♯C𝄪D𝄪E♯F𝄪G𝄪11B𝄫 LydianB𝄫C♭D♭E♭F♭G♭A♭8
E♯ LydianE♯F𝄪G𝄪A𝄪B♯C𝄪D𝄪12F♭ LydianF♭G♭A♭B♭C♭D♭E♭7
B♯ LydianB♯C𝄪D𝄪E𝄪F𝄪G𝄪A𝄪13C♭ LydianC♭D♭E♭FG♭A♭B♭6
F𝄪 LydianF𝄪G𝄪A𝄪B𝄪C𝄪D𝄪E𝄪14G♭ LydianG♭A♭B♭CD♭E♭F5
D♭ LydianD♭E♭FGA♭B♭C4
A♭ LydianA♭B♭CDE♭FG3
E♭ LydianE♭FGAB♭CD2
B♭ LydianB♭CDEFGA1
F LydianFGABCDE0

Mixolydian Mode

Key SignatureNumber of

Sharps

Key SignatureNumber of

Flats

G MixolydianGABCDEF0
D MixolydianDEF♯GABC1
A MixolydianABC♯DEF♯G2
E MixolydianEF♯G♯ABC♯D3
B MixolydianBC♯D♯EF♯G♯A4
F♯ MixolydianF♯G♯A♯BC♯D♯E5G𝄫 MixolydianG𝄫A𝄫B𝄫C𝄫D𝄫E𝄫F𝄫14
C♯ MixolydianC♯D♯E♯F♯G♯A♯B6D𝄫 MixolydianD𝄫E𝄫F♭G𝄫A𝄫B𝄫C𝄫13
G♯ MixolydianG♯A♯B♯C♯D♯E♯F♯7A𝄫 MixolydianA𝄫B𝄫C♭D𝄫E𝄫F♭G𝄫12
D♯ MixolydianD♯E♯F𝄪G♯A♯B♯C♯8E𝄫 MixolydianE𝄫F♭G♭A𝄫B𝄫C♭D𝄫11
A♯ MixolydianA♯B♯C𝄪D♯E♯F𝄪G♯9B𝄫 MixolydianB𝄫C♭D♭E𝄫F♭G♭A𝄫10
E♯ MixolydianE♯F𝄪G𝄪A♯B♯C𝄪D♯10F♭ MixolydianF♭G♭A♭B𝄫C♭D♭E𝄫9
B♯ MixolydianB♯C𝄪D𝄪E♯F𝄪G𝄪A♯11C♭ MixolydianC♭D♭E♭F♭G♭A♭B𝄫8
F𝄪 MixolydianF𝄪G𝄪A𝄪B♯C𝄪D𝄪E♯12G♭ MixolydianG♭A♭B♭C♭D♭E♭F♭7
C𝄪 MixolydianC𝄪D𝄪E𝄪F𝄪G𝄪A𝄪B♯13D♭ MixolydianD♭E♭FG♭A♭B♭C♭6
G𝄪 MixolydianG𝄪A𝄪B𝄪C𝄪D𝄪E𝄪F𝄪14A♭ MixolydianA♭B♭CD♭E♭FG♭5
E♭ MixolydianE♭FGA♭B♭CD♭4
B♭ MixolydianB♭CDE♭FGA♭3
F MixolydianFGAB♭CDE♭2
C MixolydianCDEFGAB♭1
G MixolydianGABCDEF0

Aeolian Mode (Natural Minor Scale)

Key SignatureNumber of

Sharps

Key SignatureNumber of

Flats

A MinorABCDEFG0
E MinorEF♯GABCD1
B MinorBC♯DEF♯GA2
F♯ MinorF♯G♯ABC♯DE3
C♯ MinorC♯D♯EF♯G♯AB4
G♯ MinorG♯A♯BC♯D♯EF♯5A𝄫 MinorA𝄫B𝄫C𝄫D𝄫E𝄫F𝄫G𝄫14
D♯ MinorD♯E♯F♯G♯A♯BC♯6E𝄫 MinorE𝄫F♭G𝄫A𝄫B𝄫C𝄫D𝄫13
A♯ MinorA♯B♯C♯D♯E♯F♯G♯7B𝄫 MinorB𝄫C♭D𝄫E𝄫F♭G𝄫A𝄫12
E♯ MinorE♯F𝄪G♯A♯B♯C♯D♯8F♭ MinorF♭G♭A𝄫B𝄫C♭D𝄫E𝄫11
B♯ MinorB♯C𝄪D♯E♯F𝄪G♯A♯9C♭ MinorC♭D♭E𝄫F♭G♭A𝄫B𝄫10
F𝄪 MinorF𝄪G𝄪A♯B♯C𝄪D♯E♯10G♭ MinorG♭A♭B𝄫C♭D♭E𝄫F♭9
C𝄪 MinorC𝄪D𝄪E♯F𝄪G𝄪A♯B♯11D♭ MinorD♭E♭F♭G♭A♭B𝄫C♭8
G𝄪 MinorG𝄪A𝄪B♯C𝄪D𝄪E♯F𝄪12A♭ MinorA♭B♭C♭D♭E♭F♭G♭7
D𝄪 MinorD𝄪E𝄪F𝄪G𝄪A𝄪B♯C𝄪13E♭ MinorE♭FG♭A♭B♭C♭D♭6
A𝄪 MinorA𝄪B𝄪C𝄪D𝄪E𝄪F𝄪G𝄪14B♭ MinorB♭CD♭E♭FG♭A♭5
F MinorFGA♭B♭CD♭E♭4
C MinorCDE♭FGA♭B♭3
G MinorGAB♭CDE♭F2
D MinorDEFGAB♭C1
A MinorABCDEFG0

Locrian Mode

Key SignatureNumber of

Sharps

Key SignatureNumber of

Flats

B LocrianBCDEFGA0
F♯ LocrianF♯GABCDE1
C♯ LocrianC♯DEF♯GAB2
G♯ LocrianG♯ABC♯DEF♯3
D♯ LocrianD♯EF♯G♯ABC♯4
A♯ LocrianA♯BC♯D♯EF♯G♯5B𝄫 LocrianB𝄫C𝄫D𝄫E𝄫F𝄫G𝄫A𝄫14
E♯ LocrianE♯F♯G♯A♯BC♯D♯6F♭ LocrianF♭G𝄫A𝄫B𝄫C𝄫D𝄫E𝄫13
B♯ LocrianB♯C♯D♯E♯F♯G♯A♯7C♭ LocrianC♭D𝄫E𝄫F♭G𝄫A𝄫B𝄫12
F𝄪 LocrianF𝄪G♯A♯B♯C♯D♯E♯8G♭ LocrianG♭A𝄫B𝄫C♭D𝄫E𝄫F♭11
C𝄪 LocrianC𝄪D♯E♯F𝄪G♯A♯B♯9D♭ LocrianD♭E𝄫F♭G♭A𝄫B𝄫C♭10
G𝄪 LocrianG𝄪A♯B♯C𝄪D♯E♯F𝄪10A♭ LocrianA♭B𝄫C♭D♭E𝄫F♭G♭9
D𝄪 LocrianD𝄪E♯F𝄪G𝄪A♯B♯C𝄪11E♭ LocrianE♭F♭G♭A♭B𝄫C♭D♭8
A𝄪 LocrianA𝄪B♯C𝄪D𝄪E♯F𝄪G𝄪12B♭ LocrianB♭C♭D♭E♭F♭G♭A♭7
E𝄪 LocrianE𝄪F𝄪G𝄪A𝄪B♯C𝄪D𝄪13F LocrianFG♭A♭B♭C♭D♭E♭6
B𝄪 LocrianB𝄪C𝄪D𝄪E𝄪F𝄪G𝄪A𝄪14C LocrianCD♭E♭FG♭A♭B♭5
G LocrianGA♭B♭CD♭E♭F4
D LocrianDE♭FGA♭B♭C3
A LocrianAB♭CDE♭FG2
E LocrianEFGAB♭CD1
B LocrianBCDEFGA0

See also

  • Archicembalo, ancient instrument with a double keyboard layout consisting of a 19 tone system close to 19tet in pitch with an additional 12 tone keyboard that is tuned approximately a quartertone in between the white keys of the 19 tone keyboard.
  • Beta scale
  • Elaine Walker (composer)
  • meantone temperament
  • musical temperament
  • 31 Tone Equal Temperament

References

1. ^{{cite journal |author1=Milne, A. |author2=Sethares, W.A. |author3=Plamondon, J. |url=http://www.mitpressjournals.org/doi/pdf/10.1162/comj.2007.31.4.15 |title=Isomorphic controllers and dynamic tuning: Invariant fingerings across a tuning continuum |journal=Computer Music Journal |date=Winter 2007 |volume=31 |issue=4 |pages=15–32}}
2. ^{{cite web |url=http://www.musanim.com/Yasser/ |author=Joseph Yasser |title=A Theory of Evolving Tonality |website=MusAnim.com}}
3. ^{{cite web |url=http://valnor.deviantart.com/art/Artone-19-171013371 |author=Heino, Arto Juhani |title=Artone 19 Guitar Design}} Heino names the 19 note scale Parvatic.
4. ^{{cite thesis |ref=Mandelbaum_1961 |url=http://anaphoria.com/mandelbaum.html |author=Mandelbaum, M. Joel |author-link=Joel Mandelbaum |year=1961 |title=Multiple Division of the Octave and the Tonal Resources of 19 Tone Temperament}}
5. ^{{cite journal |jstor=842948 |author=Gamer, C. |title=Some combinational resources of equal-tempered systems |journal=Journal of Music Theory |volume=11 |issue=1 |date=Spring 1967 |pages=32–59}}
6. ^{{cite book |author=Myles Leigh Skinner |year=2007 |title=Toward a Quarter-Tone Syntax: Analyses of Selected Works by Blackwood, Haba, Ives, and Wyschnegradsky |page=51 note 6 |ISBN=9780542998478}} who cites {{cite journal |author=Leedy, Douglas |year=1991 |title=A Venerable Temperament Rediscovered |journal=Perspectives of New Music |volume=29 |issue=2 |page=205}}
7. ^Skinner 2007, p.76.
8. ^{{cite book |author=Myles Leigh Skinner |year=2007 |title=Toward a Quarter-Tone Syntax: Analyses of Selected Works by Blackwood, Haba, Ives, and Wyschnegradsky |page=52 |ISBN=9780542998478}}.
9. ^{{cite book |author=Woolhouse, W. S. B. |year=1835 |url=https://books.google.com/books?id=4VjsjvqMcZgC |title=Essay on Musical Intervals, Harmonics, and the Temperament of the Musical Scale, &c. |publisher=J. Souter |location=London}}
10. ^{{cite web |url=http://tonalsoft.com/enc/number/19edo.aspx |title=19 EDO |website=TonalSoft.com}}

Further reading

  • {{cite book |author=Levy, Kenneth J. |title=Costeley's Chromatic Chanson |series=Annales Musicologues: Moyen-Age et Renaissance |volume=III |year=1955 |pages=213–261}}

External links

  • {{cite web |url=http://www.uni-graz.at/richard.parncutt/cim04/CIM04_paper_pdf/Bucht_Huovinen_CIM04_proceedings.pdf |author1=Bucht, Saku |author2=Huovinen, Erkki |title=Perceived consonance of harmonic intervals in 19 tone equal temperament |access-date=2014-03-12 |archive-url=https://web.archive.org/web/20131226014305/http://www.uni-graz.at/richard.parncutt/cim04/CIM04_paper_pdf/Bucht_Huovinen_CIM04_proceedings.pdf |archive-date=2013-12-26 |dead-url=yes |df= }}
  • {{cite web |url=http://tonalsoft.com/sonic-arts/darreg/case.htm |author=Darreg, Ivor |title=A Case For Nineteen |website=Sonic-Arts.org}}
  • {{cite web |url=http://qcpages.qc.edu/~howe/articles/19-Tone%20Theory.html |author=Howe, Hubert S. Jr. |title=19 Tone Theory and Applications |publisher=Aaron Copland School of Music at Queens College}}
  • {{cite journal |url=http://eceserv0.ece.wisc.edu/~sethares/tet19/guitarchords19.html |author=Sethares, William A. |title=Tunings for 19 tone equal tempered guitar |journal=Experimental Musical Instruments |volume=VI |series=6 |date=April 1991}}
  • {{cite web |url=http://www.n-ism.org/Projects/microtonalism.php |author1=Ingrid Pearson |author2=Graham Hair |author3=Dougie McGilvray |author4=Nick Bailey |author5=Amanda Morrison |author6=Richard Parncutt |title=Rehearsing Microtonal Music: Grappling with performance and intonational problems (project summary) |website=Microtonalism}}
  • {{cite web |url=http://www.ziaspace.com/ZIA/sections/music.html |website=ZiaSpace.com |title=19 TET downloadable MP3 files |author-link=Elaine Walker (composer) |author=Elaine Walker |publisher=Zia and D.D.T.}}
  • {{cite web |url=http://www.parnasse.com/jh/blog/ |title=The Music of Jeff Harrington |website=Parnasse.com}} Jeff Harrington is a composer who has written several pieces for piano in the 19 TET tuning, and there are both scores and MP3's available for download on this site.
  • {{cite web |url=http://chrisvaisvil.com/?p=25# |author=Chris Vaisvil |title=GR-20 Hexaphonic 19 ET guitar improvisation }}
{{Microtonal music}}{{Musical tuning}}

2 : Equal temperaments|Microtonality

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 2:21:59