请输入您要查询的百科知识:

 

词条 Igor V. Komarov
释义

  1. Career[3]

  2. Contribution to research[7]

  3. Scientific projects

  4. Awards and grants

  5. References

{{Orphan|date=August 2017}}{{Infobox scientist
| name = Igor V. Komarov
| birth_date = 15th May, 1964
| birth_place = v. Irkliiv, Ukraine
| residence = Kyiv, Ukraine
| nationality = Ukrainian
| fields = organic chemistry,

medicinal chemistry,

nanotechnology


| workplaces = Institute of High Technologies, Taras Shevchenko National University of Kyiv
| alma_mater = Taras Shevchenko National University of Kyiv
| thesis_title = Design and synthesis of model compounds: study of stereoelectronic, steric effects, reactive intermediates, catalytic enantioselective hydrogenation and dynamic protection of functional groups
| doctoral_advisor = Prof. Mykhailo Kornilov
| known_for = Design, synthesis and study of model compounds,

conformationally restricted and fluorine-containing amino acids and peptides,

photocontrollable peptidomimetics


| awards = Georg Forster research award

}}Igor Volodymyrovych Komarov is a Ukrainian synthetic organic chemist, specializing in medicinal chemistry and nanotechnology, Professor, Doctor of Chemical Sciences. He is a Head of supramolecular chemistry chair at the Institute of High Technologies of Taras Shevchenko National University of Kyiv.[1] He is also a scientific advisor of Enamine Ltd (Ukraine)[2] and Lumobiotics GmbH (Germany).

Career[3]

Igor V. Komarov graduated with distinction from Taras Shevchenko National University of Kyiv, and started to work at the same university in 1986 first as an engineer. He obtained his PhD degree (Candidate of Sciences Degree as it is called in the Ukraine) in 1991 in Organic Chemistry at Taras Shevchenko National University of Kyiv under supervision of Prof. Mikhail Yu. Kornilov; the candidate thesis was devoted to the use of lanthanide shift reagents in NMR spectroscopy.[4] Afterwards, he was a postdoctoral fellow at the University Chemical Laboratory in Cambridge (1996–1997, United Kingdom) and at the [https://www.catalysis.de/home/ Institut für Organische Katalyseforschung] in Rostock (2000–2001, Germany). He is Professor at the Supramolecular Chemistry Chair of Institute of High Technologies at Taras Shevchenko National University. Komarov earned his Doctor of Sciences degree in 2003, the title of his thesis is "Design and synthesis of model compounds: study of stereoelectronic, steric effects, reactive intermediates, catalytic enantioselective hydrogenation and dynamic protection of functional groups"[5] He is also a scientific advisor for Enamine Ltd.[2] and Lumobiotics GmbH. Igor V. Komarov was awarded the title of Professor in 2007.[6]

Contribution to research[7]

The areas of scientific interests of Igor V. Komarov are medicinal chemistry and synthesis of model compounds, which can be used to obtain new knowledge in biochemistry, stereochemistry, theoretical chemistry, catalysis. Igor has over 100 peer reviewed research papers, h-index 22,[8] has guided 6 PhD students to date. Igor's scientific group puts the main focus on developing of novel synthetic methods and design of theoretically interesting molecules, part of which were created and synthesized in tight collaboration with Prof. Anthony J. Kirby from the University of Cambridge (United Kingdom). One of such collaborative projects was synthesis, study of stereochemistry and chemical properties of 1-aza-2-adamantanone and its derivatives. A trimethyl-substituted derivative ("the most twisted amide",[9] "Kirby's amide"[10]) was designed in the Prof. Kirby's laboratory and synthesized by Igor in 1997 during his postdoctoral stay in Cambridge. In 2014, a parent molecule was made in Igor's group in collaboration with Prof. Kirby. The compound modelled the transition state of cis-trans isomerization of amides and allowed obtaining fundamental knowledge about the amide bond.[11]

Igor V. Komarov started his research in the area of synthetic organic chemistry at the beginning of 1990th, working on phosphorylation of aromatic heterocyclic compounds by phosphorus(V) acid halides.[12] At that time, convenient phosphorylation methods were developed, which now find use, for example, for synthesis of materials applicable for uranium extraction.[13] Later, working in Rostock, Igor V. Komarov changed the direction of his research and got interested in homogenous asymmetric catalysis. The study of catalysis was carried out using model compounds: functionalized camphor- and tartaric acid-derived chiral ligands were synthesized such as monophosphines,[14][15] diphosphines,[16] and then Rhodium(I) complexes with them.[16] The complexes were used for asymmetric homogenous hydrogenation of prochiral substrates, and the obtained results allowed elucidating the effects of oxo- and oxy-functional groups in ligands on efficiency and selectivity of the catalysts.[16] These works led to introduction of efficient catalysts to synthetic practice, like catASium,[17] some of them bearing a camphor-derived ligand ROCKYPhos[18] (named after the cities ROstok and KYiv).

Although Igor's interest to the synthesis of chiral ligands has not been faded, he changed the general direction of his research once more, and now he works in the area of drug design.[7] One of the main design principle is restriction of conformational mobility of the drug candidate molecules.[19][20] Prof. Komarov's research group developed many approaches to synthesis of conformationally restricted amines and amino acids - the building blocks for drug design.[19][21] Numerous conformationally restricted fluorine-containing amino acids were also designed and synthesized, with a purpose of using them as labels to study peptides in lipid bilayers by solid-state NMR spectroscopy.[22]

Igor V. Komarov's group made a contribution to design and synthesis of light-controllable biologically active compounds - photocontrollable peptides - potential candidates for photopharmacology drugs. Photopharmacology drugs can be administered in the inactive, non-toxic form, and then activated ("switched on") by light only when and where required to treat localized lesions (e.g.in solid tumors).[23] The activation by light can be done with very high spatiotemporal precision in the lesion site, leaving the rest of the patient body unaffected.[24][25] After the treatment, the photopharmacology drugs can be inactivated ("switched off") by light in order to diminish side-effects and environmental burden.[23]

Another research direction in the Igor V. Komarov's scientific group is navigation of chemical space. A method of structural comparison for organic molecules was developed which employed exit vector plot analysis.[26] Enumeration of molecules (exhaustive generation of all theoretically possible structures) was carried out for some classes of organic compounds, for example, for conformationally restricted diamines.[27]

In the area of nanotechnology, Igor V. Komarov's research group studied cell-penetrating peptides as carriers for carbon-based fluorescent nanoparticles, shuttling them inside eukaryotic cells with the purpose of bioimaging.[28]

Igor V. Komarov has a Ukrainian patent,[29] 2 international patents,[30][31] is a co-authors of text-books on NMR spectroscopy.[32]

Scientific projects

Igor V. Komarov was a coordinator of scientific projects financed by the Ministry of Education and Science of the Ukraine (three applied projects devoted to design of therapeutic peptides, including photocontrolled [1]), Alexander von Humboldt Foundation (Institute Partnershaft and Research Linkage Programs, in collaboration with Karlsruhe University (Karlsruhe, Germany)[2] and Leibniz Institute of Molecular Pharmacology (Berlin, Germany)[3]), private companies Degussa (the project was devoted to development of large-scale production of a ligand for Rhodium-based catalysts of asymmetric hydrogenation) and Enamine (six medicinal chemistry projects, lead discovery and lead optimization). He is currently a coordinator of a European Horizon2020 Research and Innovation Staff Exchange (RISE) Programme (2016–2019) Grant Agreement number: 690973 [4], the title of the project – “Peptidomimetics with Photocontrolled Biological Activity”.

Awards and grants

  • NATO Research Award (postdoctoral fellowship, 01.1996–01.1997, The University of Cambridge, United Kingdom);
  • INTAS grants (research visits, 08.1993 and 10.1994,The University of Cambridge, United Kingdom);
  • ISF grants (1998, research project, Taras Shevchenko National University of Kyiv);
  • Grants of the Royal Society of Chemistry for authors (1999, 2000);
  • Alexander von Humboldt Research [https://www.humboldt-foundation.de/web/3997980.html Fellowship] (postdoctoral stay in Rostock, Germany, 2000–2001);
  • Georg Forster Research Award (2015);[33]
  • Title "Merited Figure of Science and Technology of Ukraine" (2016).[34]

References

1. ^{{Cite web|url=http://iht.univ.kiev.ua/en/content/igor-komarov|title=Igor Komarov {{!}} Institute of High Technologies|last=|first=|date=2014-06-18|website=iht.univ.kiev.ua|language=en|archive-url=|archive-date=|dead-url=|access-date=2017-08-10}}
2. ^{{Cite web|url=http://www.enamine.net/index.php?option=com_content&task=view&id=162|title=Gallery – Enamine|website=www.enamine.net|access-date=2017-08-10}}
3. ^{{Cite web|url=http://eu.univ.kiev.ua/departments/supramolekulyarnoyi-khimiyi-ka/komarov-igor-volodymyrovych/|title=Biography|last=Komarov|first=Igor|date=|website=Encyclopedia of Taras Shevchenko National University of Kyiv|archive-url=|archive-date=|dead-url=|access-date=}}
4. ^{{Cite web|url=https://mydisser.com/en/catalog/view/126705.html|title=Study of onium salts by NMR in the presence of lanthanide shift reagents|last=Komarov|first=Igor|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}
5. ^{{Cite web|url=http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=EC&P21DBN=EC&S21STN=1&S21REF=10&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=A=&S21COLORTERMS=1&S21STR=%D0%9A%D0%BE%D0%BC%D0%B0%D1%80%D0%BE%D0%B2%20%D0%86$|title=Catalogs – Vernadski National Academic Library, Ukraine|last=|first=|date=|website=irbis-nbuv.gov.ua|archive-url=|archive-date=|dead-url=|access-date=2017-08-10}}
6. ^{{Cite web|url=http://www.library.univ.kiev.ua/ukr/vystavka/617/617-2.pdf|title=Professors of Taras Shevchenko National University of Kyiv, biographical directory|last=|first=|date=2014|website=Taras Shevchenko National University of Kyiv|archive-url=|archive-date=|dead-url=|access-date=}}
7. ^{{Cite web|url=http://science.univ.kiev.ua/en/researchgroups/research.php?ELEMENT_ID=2554|title=Igor Komarov|website=science.univ.kiev.ua|language=en|access-date=2017-08-10}}
8. ^{{Cite web|url=https://www.scopus.com/authid/detail.uri?authorId=7004891576|title=Igor V. Komarov author's profile|last=|first=|date=August 2017|website=Scopus|publisher=|accessdate=}}
9. ^{{Cite news|title=The Most Twisted Amide: Structure and Reactions|last=Kirby|first=Anthony J.|last2=Komarov|first2=Igor V.|last3=Wothers|first3=Peter D.|last4=Feeder|first4=Neil|date=1998-04-03|pages=785–786|language=en|work=Angewandte Chemie International Edition|volume=37|doi=10.1002/(SICI)1521-3773(19980403)37:6<785::AID-ANIE785>3.0.CO;2-J|issn=1521-3773|issue=6}}
10. ^{{Cite journal|last=Liu|first=Chengwei|last2=Szostak|first2=Michal|date=2017-05-29|title=Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N−C Amide Bond Activation|journal=Chemistry – A European Journal|language=en|volume=23|issue=30|pages=7157–7173|doi=10.1002/chem.201605012|pmid=27813178|issn=1521-3765}}
11. ^{{Cite news|title=The Most Reactive Amide As a Transition-State Mimic For cis–trans Interconversion|last=Komarov|first=Igor V.|last2=Yanik|first2=Stanislav|last3=Ishchenko|first3=Aleksandr Yu.|last4=Davies|first4=John E.|last5=Goodman|first5=Jonathan M.|last6=Kirby|first6=Anthony J.|date=2015-01-21|pages=926–930|work=Journal of the American Chemical Society|volume=137|doi=10.1021/ja511460a|issn=0002-7863|issue=2}}
12. ^{{Cite news|url=http://www.sciencedirect.com/science/article/pii/004040209500797C|title=Phosphorylation of 1,3-Di(N-alkyl)Azoles by Phosphorus(V) Acid Chlorides — a Route to Potential Haptens Derived from Phosphinic Acids|last=V. Komarov|first=Igor|last2=Yu. Kornilov|first2=Mikhail|last3=V. Turov|first3=Aleksandr|last4=V. Gorichko|first4=Marian|last5=O. Popov|first5=Vladimir|last6=A. Tolmachev|first6=Andrey|last7=J. Kirby|first7=Anthony|date=1995-11-06|pages=12417–12424|work=Tetrahedron|volume=51|doi=10.1016/0040-4020(95)00797-C|issue=45|accessdate=2017-08-06}}
13. ^{{Cite news|url=http://www.sciencedirect.com/science/article/pii/S0304389416303971|title=Silica with immobilized phosphinic acid-derivative for uranium extraction|last=Budnyak|first=Tetyana M.|last2=Strizhak|first2=Alexander V.|last3=Gładysz-Płaska|first3=Agnieszka|last4=Sternik|first4=Dariusz|last5=Komarov|first5=Igor V.|last6=Kołodyńska|first6=Dorota|last7=Majdan|first7=Marek|last8=Tertykh|first8=Valentin А.|date=2016-08-15|pages=326–340|work=Journal of Hazardous Materials|volume=314|doi=10.1016/j.jhazmat.2016.04.056|accessdate=2017-08-06}}
14. ^{{Cite news|title=Highly Enantioselective or Not?—Chiral Monodentate Monophosphorus Ligands in the Asymmetric Hydrogenation|last=Komarov|first=Igor V.|last2=Börner|first2=Armin|date=2001-04-01|pages=1197–1200|language=en|work=Angewandte Chemie International Edition|volume=40|doi=10.1002/1521-3773(20010401)40:7<1197::AID-ANIE1197>3.0.CO;2-G|issn=1521-3773|issue=7}}
15. ^{{Cite news|url=http://www.sciencedirect.com/science/article/pii/S0957416606004721|title=New chiral monodentate phospholane ligands by highly stereoselective hydrophosphination|last=Bilenko|first=Vitaliy|last2=Spannenberg|first2=Anke|last3=Baumann|first3=Wolfgang|last4=Komarov|first4=Igor|last5=Börner|first5=Armin|date=2006-08-28|pages=2082–2087|work=Tetrahedron: Asymmetry|volume=17|doi=10.1016/j.tetasy.2006.06.047|issue=14|accessdate=2017-08-07}}
16. ^{{Cite news|title=Chiral Oxo- and Oxy-Functionalized Diphosphane Ligands Derived from Camphor for Rhodium(I)-Catalyzed Enantioselective Hydrogenation|last=Komarov|first=Igor V.|last2=Monsees|first2=Axel|last3=Spannenberg|first3=Anke|last4=Baumann|first4=Wolfgang|last5=Schmidt|first5=Ute|last6=Fischer|first6=Christine|last7=Börner|first7=Armin|date=2003-01-01|pages=138–150|language=en|work=European Journal of Organic Chemistry|volume=2003|doi=10.1002/1099-0690(200301)2003:1<138::AID-EJOC138>3.0.CO;2-O|issn=1099-0690|issue=1}}
17. ^{{Cite news|url=http://www.sigmaaldrich.com/chemistry/chemical-synthesis/technology-spotlights/catasium.html|title=catASium – Essential Elements for Asymmetric Hydrogenations|work=Sigma-Aldrich|access-date=2017-08-11|language=en}}
18. ^{{Cite news|url=http://www.sciencedirect.com/science/article/pii/S0957416602003725|title=A new hydroxydiphosphine as a ligand for Rh(I)-catalyzed enantioselective hydrogenation|last=Komarov|first=Igor V.|last2=Monsees|first2=Axel|last3=Kadyrov|first3=Renat|last4=Fischer|first4=Christine|last5=Schmidt|first5=Ute|last6=Börner|first6=Armin|date=2002-08-14|pages=1615–1620|work=Tetrahedron: Asymmetry|volume=13|doi=10.1016/S0957-4166(02)00372-5|issue=15|accessdate=2017-08-07}}
19. ^{{Cite news|title=Bicyclic Conformationally Restricted Diamines|last=Grygorenko|first=Oleksandr O.|last2=Radchenko|first2=Dmytro S.|last3=Volochnyuk|first3=Dmitriy M.|last4=Tolmachev|first4=Andrey A.|last5=Komarov|first5=Igor V.|date=2011-09-14|pages=5506–5568|work=Chemical Reviews|volume=111|doi=10.1021/cr100352k|issn=0009-2665|issue=9}}
20. ^{{Cite news|url=http://www.sciencedirect.com/science/article/pii/S0040402010017266|title=Trifluoromethyl-substituted cyclopropanes|last=Grygorenko|first=Oleksandr O.|last2=Artamonov|first2=Oleksiy S.|last3=Komarov|first3=Igor V.|last4=Mykhailiuk|first4=Pavel K.|date=2011-02-04|pages=803–823|work=Tetrahedron|volume=67|doi=10.1016/j.tet.2010.11.068|issue=5|accessdate=2017-08-07}}
21. ^{{Cite news|title=Synthesis and Structural Analysis of Angular Monoprotected Diamines Based on Spiro[3.3]heptane Scaffold|last=Chernykh|first=Anton V.|last2=Radchenko|first2=Dmytro S.|last3=Grygorenko|first3=Oleksandr O.|last4=Daniliuc|first4=Constantin G.|last5=Volochnyuk|first5=Dmitriy M.|last6=Komarov|first6=Igor V.|date=2015-04-17|pages=3974–3981|work=The Journal of Organic Chemistry|volume=80|doi=10.1021/acs.joc.5b00323|issn=0022-3263|issue=8}}
22. ^{{Cite book|title=Trifluoromethyl-substituted α-amino acids as solid-state 19F NMR labels for structural studies of membrane-bound peptides. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications.|last=Kubyshkin|first=Volodymyr|year=2012|publisher=|location=|pages=91–138|isbn=}}
23. ^{{Cite journal|last=Velema|first=Willem A.|last2=Szymanski|first2=Wiktor|last3=Feringa|first3=Ben L.|date=2014-02-12|title=Photopharmacology: Beyond Proof of Principle|journal=Journal of the American Chemical Society|volume=136|issue=6|pages=2178–2191|doi=10.1021/ja413063e|pmid=24456115|issn=0002-7863|url=https://pure.rug.nl/ws/files/13153399/ja_2013_13063e_photopharma_revised.pdf}}
24. ^{{Cite news|title=Controlling Biological Activity with Light: Diarylethene-Containing Cyclic Peptidomimetics|last=Babii|first=Oleg|last2=Afonin|first2=Sergii|last3=Berditsch|first3=Marina|last4=Reiβer|first4=Sabine|last5=Mykhailiuk|first5=Pavel K.|last6=Kubyshkin|first6=Vladimir S.|last7=Steinbrecher|first7=Thomas|last8=Ulrich|first8=Anne S.|last9=Komarov|first9=Igor V.|date=2014-03-24|pages=3392–3395|language=en|work=Angewandte Chemie International Edition|volume=53|doi=10.1002/anie.201310019|issn=1521-3773|issue=13}}
25. ^{{Cite news|title=Direct Photocontrol of Peptidomimetics: An Alternative to Oxygen-Dependent Photodynamic Cancer Therapy|last=Babii|first=Oleg|last2=Afonin|first2=Sergii|last3=Garmanchuk|first3=Liudmyla V.|last4=Nikulina|first4=Viktoria V.|last5=Nikolaienko|first5=Tetiana V.|last6=Storozhuk|first6=Olha V.|last7=Shelest|first7=Dmytro V.|last8=Dasyukevich|first8=Olga I.|last9=Ostapchenko|first9=Liudmyla I.|date=2016-04-25|pages=5583–5586|language=en|work=Angewandte Chemie|volume=128|doi=10.1002/ange.201600506|issn=1521-3757|issue=18}}
26. ^{{Cite journal|last=Grygorenko|first=Oleksandr O.|last2=Babenko|first2=Pavlo|last3=Volochnyuk|first3=Dmitry M.|last4=Raievskyi|first4=Oleksii|last5=Komarov|first5=Igor V.|date=2016-02-09|title=Following Ramachandran: exit vector plots (EVP) as a tool to navigate chemical space covered by 3D bifunctional scaffolds. The case of cycloalkanes|url=http://pubs.rsc.org/-/content/articlehtml/2016/ra/c5ra19958a|journal=RSC Advances|language=en|volume=6|issue=21|pages=17595–17605|doi=10.1039/C5RA19958A|issn=2046-2069}}
27. ^{{Cite news|title=Focused enumeration and assessing the structural diversity of scaffold libraries: conformationally restricted bicyclic secondary diamines|last=Grygorenko|first=Oleksandr O.|last2=Prytulyak|first2=Roman|last3=Volochnyuk|first3=Dmitriy M.|last4=Kudrya|first4=Volodymyr|last5=Khavryuchenko|first5=Oleksiy V.|last6=Komarov|first6=Igor V.|date=2012-08-01|pages=477–487|language=en|work=Molecular Diversity|volume=16|doi=10.1007/s11030-012-9381-2|issn=1381-1991|issue=3}}
28. ^{{Cite news|title=Delivery of SiC-based nanoparticles into live cells driven by cell-penetrating peptides SAP and SAP-E|url=http://pubs.rsc.org/-/content/articlehtml/2015/ra/c4ra10688a|work=RSC Advances|date=2015-02-17|accessdate=2017-08-11|issn=2046-2069|doi=10.1039/C4RA10688A|volume=5|issue=26|language=en|first=T.|last=Serdiuk|first2=I.|last2=Bakanovich|first3=V.|last3=Lysenko|first4=S. A.|last4=Alekseev|first5=V. A.|last5=Skryshevsky|first6=S.|last6=Afonin|first7=E.|last7=Berger|first8=A.|last8=Géloën|first9=I. V.|last9=Komarov}}
29. ^{{Cite web|url=http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=232416|title=Спеціалізована БД "Винаходи (корисні моделі) в Україні"|website=base.uipv.org|accessdate=2017-08-07}}
30. ^{{Cite web|url=https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20161005&DB=&locale=en_EP&CC=EP&NR=2958934B1&KC=B1&ND=4#|title=Espacenet Original document|last=|first=|date=|website=worldwide.espacenet.com|language=en|archive-url=|archive-date=|dead-url=|accessdate=2017-08-07}}
31. ^{{Cite web|url=https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=US&NR=2017051017A1&KC=A1&FT=D&ND=3&date=20170223&DB=&locale=en_EP#|title=Espacenet Original document|last=|first=|date=|website=worldwide.espacenet.com|language=en|archive-url=|archive-date=|dead-url=|accessdate=2017-08-07}}
32. ^{{Cite web|url=http://iht.univ.kiev.ua/uk/library/books-ivt|title=Книги і методичні посібники викладачів ІВТ {{!}} Інститут високих технологій|date=2012-01-01|website=iht.univ.kiev.ua|language=uk|accessdate=2017-08-07}}
33. ^{{Cite web|url=https://www.humboldt-foundation.de/web/3997980.html|title=Alexander von Humboldt-Foundation – Awards for researchers from transition and developing countries|website=www.humboldt-foundation.de|accessdate=2017-08-10}}
34. ^{{Cite news|url=http://www.president.gov.ua/documents/2172016-20089 |script-title=uk:УКАЗ ПРЕЗИДЕНТА УКРАЇНИ №217/2016 — Офіційне інтернет-представництво Президента України|language=uk|work=Офіційне інтернет-представництво Президента України|accessdate=2017-08-10}}
{{authority control}}{{DEFAULTSORT:Komarov, Igor}}

6 : 1964 births|Living people|Ukrainian chemists|Organic chemists|Taras Shevchenko National University of Kyiv alumni|Alexander von Humboldt Fellows

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 8:29:30