请输入您要查询的百科知识:

 

词条 Janiszewski's theorem
释义

  1. References

In mathematics, Janiszewski's theorem, named after the Polish mathematician Zygmunt Janiszewski, is a result concerning the topology of the plane or extended plane. It states that if A and B are closed subsets of the extended plane with connected intersection, then any two points that can be connected by paths avoiding either A or B can be connected by a path avoiding both of them. The theorem has been used as a tool for proving the Jordan curve theorem and in complex function theory.

References

  • {{citation|title=The Geometric Topology of 3-Manifolds|volume =40|series=Colloquium Publications|publisher=American Mathematical Society|first=R. H.|last= Bing|authorlink=R. H. Bing|year= 1983|isbn=0-8218-1040-5}}
  • {{citation|last=Pommerenke|first= C.|authorlink=Christian Pommerenke|title=Univalent functions, with a chapter on quadratic differentials by Gerd Jensen|series= Studia Mathematica/Mathematische Lehrbücher|volume=15|publisher= Vandenhoeck & Ruprecht|year= 1975}}
  • {{citation|last= Pommerenke|first=C. |title=Boundary behaviour of conformal maps|series= Grundlehren der Mathematischen Wissenschaften|volume= 299|publisher=Springer|year=1992|isbn= 3540547517}}
{{topology-stub}}

1 : Theorems in topology

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 14:56:42