词条 | Klaas Wynne |
释义 |
| name = Klaas Wynne | native_name = Klaas Wijnne | native_name_lang = Dutch | image =Klaas Wynne.jpg | birth_date = August 5, 1964 | birth_place = Amsterdam, The Netherlands | nationality = Dutch | fields = Chemistry, physics, spectroscopy | alma_mater = University of Amsterdam | website = http://www.wijnne.com }}Klaas Wynne (also Wijnne; born 1964) is a Professor in the School of Chemistry at the University of Glasgow and chair of Chemical Physics.[1][2] He was previously a professor in the Department of Physics at the University of Strathclyde (1996–2010).[3] He received his BSc in Chemistry from the University of Amsterdam in 1987 and his PhD in Chemistry from the University of Amsterdam in 1990 under the supervision of Joop van Voorst.[4] He did his postdoctoral fellowship in the laboratory of Robin Hochstrasser at the University of Pennsylvania.[5] Wynne has authored over 80 published scientific papers.[6][7][8][9] His work is focused on the structure and dynamics of liquids[10][11][12][13] and solutions[14][15][16][17] as well as peptides,[18] proteins,[19][20][21] and other biomolecules[22][23][24] treated as amorphous objects behaving much like liquids. He described the Mayonnaise Effect, which explains the anomalous increase of the viscosity of solutions with concentration in terms of a jamming transition.[25] He is particularly interested in phase behavior such as "supercooling of liquids, folding transitions in peptides,[18] phase separation and nucleation using laser-tweezing,[26] nucleation of crystals from solution",[27] and liquid-liquid[28] and liquid-crystalline transitions.[29] These phenomena are studied using femtosecond spectroscopies[30] such as ultrafast optical Kerr-effect spectroscopy, time-domain terahertz spectroscopy (THz-TDS)[31][32] as well as optical microscopy and various other forms of spectroscopy.[33][34] Awards and honors
References1. ^{{Cite web|url=http://www.gla.ac.uk/schools/chemistry/staff/klaaswynne/|title=University of Glasgow - Schools - School of Chemistry - Staff - all - Prof. Klaas Wynne|website=www.gla.ac.uk|language=en|access-date=2017-08-26}} 2. ^{{Cite web|url=https://www.linkedin.com/in/klaaswynne/|title=LinkedIn Klaas Wynne|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}} 3. ^{{Cite web|url=https://www.strath.ac.uk/staff/wynneklaasprof/|title=Prof Klaas Wynne {{!}} University of Strathclyde|website=www.strath.ac.uk|language=en|access-date=2017-08-26}} 4. ^{{Cite web|url=http://permalink.opc.uva.nl/item/000379401|title=UvA + HvA - Volledige presentatie|website=permalink.opc.uva.nl|access-date=2017-08-26}} 5. ^{{Cite journal|title=Colleagues of Robin M. Hochstrasser|journal=The Journal of Physical Chemistry|language=en|volume=100|issue=29|pages=11792|doi=10.1021/jp963475e|year=1996}} 6. ^{{Cite web|url=https://scholar.google.com/citations?user=RF0xlFsAAAAJ&hl=en&oi=ao|title=Klaas Wynne - Google Scholar Citations|website=scholar.google.com|access-date=2017-08-26}} 7. ^{{Cite web|url=https://orcid.org/0000-0002-5305-5940|title=Klaas Wynne (0000-0002-5305-5940) - ORCID {{!}} Connecting Research and Researchers|last=ORCID|website=orcid.org|language=en|access-date=2017-08-26}} 8. ^{{Cite web|url=https://www.researchgate.net/profile/Klaas_Wynne|title=Klaas Wynne|website=ResearchGate|language=en|access-date=2017-08-26}} 9. ^{{Cite web|url=http://loop.frontiersin.org/people/299971/overview|title=Klaas Wynne|website=Loop|language=en|access-date=2017-08-26}} 10. ^{{Cite journal|last=Reichenbach|first=Judith|last2=Ruddell|first2=Stuart A.|last3=González-Jiménez|first3=Mario|last4=Lemes|first4=Julio|last5=Turton|first5=David A.|last6=France|first6=David J.|last7=Wynne|first7=Klaas|date=2017-05-31|title=Phonon-like Hydrogen-Bond Modes in Protic Ionic Liquids|journal=Journal of the American Chemical Society|volume=139|issue=21|pages=7160–7163|doi=10.1021/jacs.7b03036|pmid=28511538|issn=0002-7863}} 11. ^{{Cite journal|last=Turton|first=David A.|last2=Wynne|first2=Klaas|date=2014-05-01|title=Stokes–Einstein–Debye Failure in Molecular Orientational Diffusion: Exception or Rule?|journal=The Journal of Physical Chemistry B|volume=118|issue=17|pages=4600–4604|doi=10.1021/jp5012457|pmid=24702302|issn=1520-6106|url=http://eprints.gla.ac.uk/93401/1/93401.pdf}} 12. ^{{Cite journal|last=Turton|first=David A.|last2=Hunger|first2=Johannes|last3=Stoppa|first3=Alexander|last4=Hefter|first4=Glenn|last5=Thoman|first5=Andreas|last6=Walther|first6=Markus|last7=Buchner|first7=Richard|last8=Wynne|first8=Klaas|date=2009-08-12|title=Dynamics of Imidazolium Ionic Liquids from a Combined Dielectric Relaxation and Optical Kerr Effect Study: Evidence for Mesoscopic Aggregation|journal=Journal of the American Chemical Society|volume=131|issue=31|pages=11140–11146|doi=10.1021/ja903315v|pmid=19594150|issn=0002-7863|url=http://eprints.gla.ac.uk/45893/1/45893.pdf}} 13. ^{{Cite journal|last=Giraud|first=Gerard|last2=Gordon|first2=Charles M.|last3=Dunkin|first3=Ian R.|last4=Wynne|first4=Klaas|date=2003-06-18|title=The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study|journal=The Journal of Chemical Physics|volume=119|issue=1|pages=464–477|doi=10.1063/1.1578056|issn=0021-9606|bibcode=2003JChPh.119..464G}} 14. ^{{Cite journal|last=Ramakrishnan|first=Gopakumar|last2=González-Jiménez|first2=Mario|last3=Lapthorn|first3=Adrian J.|last4=Wynne|first4=Klaas|date=2017-07-06|title=Spectrum of Slow and Super-Slow (Picosecond to Nanosecond) Water Dynamics around Organic and Biological Solutes|journal=The Journal of Physical Chemistry Letters|volume=8|issue=13|pages=2964–2970|doi=10.1021/acs.jpclett.7b01127|pmid=28612605|issn=1948-7185}} 15. ^{{Cite journal|last=Turton|first=David A.|last2=Corsaro|first2=Carmelo|last3=Martin|first3=David F.|last4=Mallamace|first4=Francesco|last5=Wynne|first5=Klaas|date=2012-05-16|title=The dynamic crossover in water does not require bulk water|journal=Physical Chemistry Chemical Physics|language=en|volume=14|issue=22|pages=8067–73|doi=10.1039/c2cp40703e|pmid=22569882|issn=1463-9084|bibcode=2012PCCP...14.8067T}} 16. ^{{Cite journal|last=Turton|first=David A.|last2=Wynne|first2=Klaas|date=2009-11-28|title=Universal nonexponential relaxation: Complex dynamics in simple liquids|journal=The Journal of Chemical Physics|volume=131|issue=20|pages=201101|doi=10.1063/1.3265862|pmid=19947668|issn=0021-9606|bibcode=2009JChPh.131t1101T|url=https://strathprints.strath.ac.uk/27317/1/strathprint27317.pdf}} 17. ^{{Cite journal|last=Turton|first=David A.|last2=Hunger|first2=Johannes|last3=Hefter|first3=Glenn|last4=Buchner|first4=Richard|last5=Wynne|first5=Klaas|date=2008-04-24|title=Glasslike behavior in aqueous electrolyte solutions|journal=The Journal of Chemical Physics|volume=128|issue=16|pages=161102|doi=10.1063/1.2906132|pmid=18447413|issn=0021-9606|arxiv=0904.0717|bibcode=2008JChPh.128p1102T}} 18. ^1 {{Cite journal|last=Hunt|first=Neil T.|last2=Kattner|first2=Lisa|last3=Shanks|first3=Richard P.|last4=Wynne|first4=Klaas|date=2007-03-01|title=The Dynamics of Water−Protein Interaction Studied by Ultrafast Optical Kerr-Effect Spectroscopy|journal=Journal of the American Chemical Society|volume=129|issue=11|pages=3168–3172|doi=10.1021/ja066289n|pmid=17315992|issn=0002-7863}} 19. ^{{Cite journal|last=Turton|first=David A.|last2=Senn|first2=Hans Martin|last3=Harwood|first3=Thomas|last4=Lapthorn|first4=Adrian J.|last5=Ellis|first5=Elizabeth M.|last6=Wynne|first6=Klaas|date=2014-06-03|title=Terahertz underdamped vibrational motion governs protein-ligand binding in solution|journal=Nature Communications|language=en|volume=5|pages=ncomms4999|doi=10.1038/ncomms4999|pmid=24893252|bibcode=2014NatCo...5E3999T}} 20. ^{{Cite journal|last=Giraud|first=Gerard|last2=Karolin|first2=Jan|last3=Wynne|first3=Klaas|title=Low-Frequency Modes of Peptides and Globular Proteins in Solution Observed by Ultrafast OHD-RIKES Spectroscopy|journal=Biophysical Journal|volume=85|issue=3|pages=1903–1913|doi=10.1016/s0006-3495(03)74618-9|pmid=12944303|pmc=1303362|bibcode=2003BpJ....85.1903G|date=September 2003}} 21. ^{{Cite news|url=https://futurezone.at/science/glockenlaeutendes-enzym-koennte-erwin-schroedinger-bestaetigen/68.698.988|title=Glockenläutendes Enzym könnte Erwin Schrödinger bestätigen|access-date=2017-08-26|language=de}} 22. ^{{Cite journal|last=Hithell|first=Gordon|last2=González-Jiménez|first2=Mario|last3=Greetham|first3=Gregory M.|last4=Donaldson|first4=Paul M.|last5=Towrie|first5=Michael|last6=Parker|first6=Anthony W.|last7=Burley|first7=Glenn A.|last8=Wynne|first8=Klaas|last9=Hunt|first9=Neil T.|date=2017-04-19|title=Ultrafast 2D-IR and optical Kerr effect spectroscopy reveal the impact of duplex melting on the structural dynamics of DNA|journal=Phys. Chem. Chem. Phys.|language=en|volume=19|issue=16|pages=10333–10342|doi=10.1039/c7cp00054e|pmid=28397911|issn=1463-9084|bibcode=2017PCCP...1910333H}} 23. ^{{Cite journal|last=González-Jiménez|first=Mario|last2=Ramakrishnan|first2=Gopakumar|last3=Harwood|first3=Thomas|last4=Lapthorn|first4=Adrian J.|last5=Kelly|first5=Sharon M.|last6=Ellis|first6=Elizabeth M.|last7=Wynne|first7=Klaas|date=2016-06-01|title=Observation of coherent delocalized phonon-like modes in DNA under physiological conditions|journal=Nature Communications|language=en|volume=7|pages=ncomms11799|doi=10.1038/ncomms11799|pmid=27248361|pmc=4895446|bibcode=2016NatCo...711799G}} 24. ^{{Cite news|url=https://phys.org/news/2016-06-sound-like-whizzing-dna-essential-life.html|title=Sound-like bubbles whizzing around in DNA are essential to life|access-date=2017-08-26}} 25. ^{{Cite journal|last=Wynne|first=Klaas|date=2017-12-08|title=The Mayonnaise Effect|journal=The Journal of Physical Chemistry Letters|volume=8|issue=24|pages=6189–6192|doi=10.1021/acs.jpclett.7b03207|pmid=29220573|issn=1948-7185|url=http://eprints.gla.ac.uk/153368/7/153368.pdf}} 26. ^{{Cite journal|last=Walton|first=Finlay|last2=Wynne|first2=Klaas|date=2018-03-05|title=Control over phase separation and nucleation using a laser-tweezing potential|journal=Nature Chemistry|language=En|volume=10|issue=5|pages=506–510|doi=10.1038/s41557-018-0009-8|pmid=29507366|issn=1755-4330|bibcode=2018NatCh..10..506W}} 27. ^{{Cite journal|last=Mosses|first=Joanna|last2=Turton|first2=David A.|last3=Lue|first3=Leo|last4=Sefcik|first4=Jan|last5=Wynne|first5=Klaas|date=2014-12-18|title=Crystal templating through liquid–liquid phase separation|journal=Chem. Commun.|language=en|volume=51|issue=6|pages=1139–1142|doi=10.1039/c4cc07880b|pmid=25466237|issn=1364-548X}} 28. ^{{Cite journal|last=Mosses|first=Joanna|last2=Syme|first2=Christopher D.|last3=Wynne|first3=Klaas|date=2015-01-02|title=Order Parameter of the Liquid–Liquid Transition in a Molecular Liquid|journal=The Journal of Physical Chemistry Letters|volume=6|issue=1|pages=38–43|doi=10.1021/jz5022763|pmid=26263088|issn=1948-7185|url=http://eprints.gla.ac.uk/100728/7/100728.pdf}} 29. ^{{Cite journal|last=Syme|first=Christopher D.|last2=Mosses|first2=Joanna|last3=González-Jiménez|first3=Mario|last4=Shebanova|first4=Olga|last5=Walton|first5=Finlay|last6=Wynne|first6=Klaas|date=2017-02-17|title=Frustration of crystallisation by a liquid–crystal phase|journal=Scientific Reports|language=en|volume=7|pages=42439|doi=10.1038/srep42439|pmid=28209972|pmc=5314399|issn=2045-2322|bibcode=2017NatSR...742439S}} 30. ^{{Cite book|url=https://books.google.com/?id=dVOz6v5icxkC&pg=PA2507&lpg=PA2507&dq=%22Klaas+Wynne%22+-wikipedia#v=onepage&q=%22Klaas%20Wynne%22%20-wikipedia&f=false|title=Handbook of Laser Technology and Applications: Applications|last=Webb|first=Colin E.|last2=Jones|first2=Julian D. C.|date=2004|publisher=CRC Press|isbn=9780750309660|language=en}} 31. ^{{Cite journal|last=Wynne|first=Klaas|title=Causality and the nature of information|journal=Optics Communications|volume=209|issue=1–3|pages=85–100|doi=10.1016/s0030-4018(02)01638-3|bibcode=2002OptCo.209...85W|year=2002}} 32. ^{{Cite journal|last=Carey|first=John J.|date=2000|title=Noncausal Time Response in Frustrated Total Internal Reflection?|journal=Physical Review Letters|volume=84|issue=7|pages=1431–1434|doi=10.1103/physrevlett.84.1431|pmid=11017535|bibcode=2000PhRvL..84.1431C}} 33. ^{{Cite web|url=http://www.chem.gla.ac.uk/wynne/|title=Wynne group at the University of Glasgow|last=Wynne|first=Klaas|date=|website=|archive-url=|archive-date=|dead-url=|access-date=2017-08-23}} 34. ^{{Cite web|url=http://www.gla.ac.uk/schools/chemistry/staff/klaaswynne/|title=Klaas Wynne staff page School of Chemistry|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}} 35. ^{{Cite web|url=http://www.rsc.org/ScienceAndTechnology/Awards/ChemicalDynamicsAward/2018-Winner.asp|title=RSC Chemical Dynamics Award 2018 Winner|website=www.rsc.org|language=en|access-date=2018-05-18}} 36. ^{{Cite web|url=http://pubs.acs.org/page/jacsat/editors.html|title=Editors|website=pubs.acs.org|language=en|access-date=2017-08-23}} 37. ^{{Cite news|url=https://www.rse.org.uk/fellow/klaas-wynne/|title=Professor Klaas Wynne FRSE - The Royal Society of Edinburgh|work=The Royal Society of Edinburgh|access-date=2017-08-23|language=en-GB}} 38. ^{{Cite web|url=https://www.strath.ac.uk/staff/wynneklaasprof/|title=Prof Klaas Wynne {{!}} University of Strathclyde|website=www.strath.ac.uk|language=en|access-date=2017-08-23}} 39. ^{{Cite book|url=https://www.journals.elsevier.com/chemical-physics/editorial-board|title=Chemical Physics Editorial Board}} External links
4 : Scottish physicists|Scottish chemists|1964 births|Living people |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。