请输入您要查询的百科知识:

 

词条 5-orthoplex
释义

  1. Alternate names

  2. As a configuration

  3. Cartesian coordinates

  4. Construction

  5. Other images

  6. Related polytopes and honeycombs

  7. References

  8. External links

Regular 5-orthoplex
(pentacross)

Orthogonal projection
inside Petrie polygon
TypeRegular 5-polytope
Familyorthoplex
Schläfli symbol {3,3,3,4}
{3,3,31,1}
Coxeter-Dynkin diagramsnode_1|3|node|3|node|3|node|4|node}}
{{CDD|node_1|3|node|3|node|split1|nodes}}
4-faces32 {33}
Cells80 {3,3}
Faces80 {3}
Edges40
Vertices10
Vertex figure
16-cell
Petrie polygondecagon
Coxeter groupsBC5, [3,3,3,4]
D5, [32,1,1]
Dual5-cube
Propertiesconvex

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.

Alternate names

  • pentacross, derived from combining the family name cross polytope with pente for five (dimensions) in Greek.
  • Triacontaditeron (or triacontakaiditeron) - as a 32-facetted 5-polytope (polyteron).

As a configuration

This configuration matrix represents the 5-orthoplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

Cartesian coordinates

Cartesian coordinates for the vertices of a 5-orthoplex, centered at the origin are

(±1,0,0,0,0), (0,±1,0,0,0), (0,0,±1,0,0), (0,0,0,±1,0), (0,0,0,0,±1)

Construction

There are three Coxeter groups associated with the 5-orthoplex, one regular, dual of the penteract with the C5 or [4,3,3,3] Coxeter group, and a lower symmetry with two copies of 5-cell facets, alternating, with the D5 or [32,1,1] Coxeter group, and the final one as a dual 5-orthotope, called a 5-fusil which can have a variety of subsymmetries.

NameCoxeter diagramSchläfli symbolSymmetryOrderVertex figure(s)
regular 5-orthoplexnode_1|3|node|3|node|3|node|4|node}}{3,3,3,4}[3,3,3,4]3840node_1|3|node|3|node|4|node}}
Quasiregular 5-orthoplexnode_1|3|node|3|node|split1|nodes}}{3,3,31,1}[3,3,31,1]1920node_1|3|node|split1|nodes}}
5-fusil
node_f1|4|node|3|node|3|node|3|node}}{3,3,3,4}[4,3,3,3]3840node_f1|4|node|3|node|3|node}}
node_f1|4|node|3|node|3|node|2|node_f1}}{3,3,4}+{}[4,3,3,2]768node_f1|4|node|3|node|2|node_f1}}
node_f1|4|node|3|node|2|node_f1|4|node}}{3,4}+{4}[4,3,2,4]384node_f1|4|node|3|node|2|node_f1}}
{{CDD|node_f1|4|node|2|node_f1|4|node}}
node_f1|4|node|3|node|2|node_f1|2|node_f1}}{3,4}+2{}[4,3,2,2]192node_f1|4|node|3|node|2|node_f1}}
{{CDD|node_f1|4|node|2|node_f1|2|node_f1}}
node_f1|4|node|2|node_f1|4|node|2|node_f1}}2{4}+{}[4,2,4,2]128node_f1|4|node|2|node_f1|4|node}}
node_f1|4|node|2|node_f1|2|node_f1|2|node_f1}}{4}+3{}[4,2,2,2]64node_f1|4|node|2|node_f1|2|node_f1}}
{{CDD|node_f1|2|node_f1|2|node_f1|2|node_f1}}
node_f1|2|node_f1|2|node_f1|2|node_f1|2|node_f1}}5{}[2,2,2,2]32node_f1|2|node_f1|2|node_f1|2|node_f1}}

Other images

{{5-cube Coxeter plane graphs|t4|150}}

The perspective projection (3D to 2D) of a stereographic projection (4D to 3D) of the Schlegel diagram (5D to 4D) of the 5-orthoplex. 10 sets of 4 edges form 10 circles in the 4D Schlegel diagram: two of these circles are straight lines in the stereographic projection because they contain the center of projection.

Related polytopes and honeycombs

{{2 k1 polytopes}}

This polytope is one of 31 uniform 5-polytopes generated from the B5 Coxeter plane, including the regular 5-cube and 5-orthoplex.

{{Penteract family}}

References

1. ^Coxeter, Regular Polytopes, sec 1.8 Configurations
2. ^Coxeter, Complex Regular Polytopes, p.117
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • {{KlitzingPolytopes|polytera.htm|5D uniform polytopes (polytera)|x3o3o3o4o - tac}}

External links

  • {{GlossaryForHyperspace | anchor=Cross | title=Cross polytope }}
  • Polytopes of Various Dimensions
  • Multi-dimensional Glossary
{{Polytopes}}

1 : 5-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 8:16:31