请输入您要查询的百科知识:

 

词条 Kristy M. Ainslie
释义

  1. Background

  2. Career

  3. References

  4. External links

{{Multiple issues|{{notability|date=July 2018}}{{BLP primary sources|date=July 2018}}{{COI|date=July 2018}}
}}{{Infobox scientist
| honorific_prefix =
| name = Kristy M. Ainslie
| honorific_suffix =
| native_name =
| native_name_lang =
| image =
| image_size =
| image_upright =
| alt =
| caption =
| birth_name =
| birth_date =
| birth_place =
| death_date =
| death_place =
| death_cause =
| resting_place =
| resting_place_coordinates =
| other_names =
| pronounce =
| residence =
| citizenship = USA
| nationality =
| fields = Engineering, Pharmacy
| workplaces =
| patrons =
| education =
| alma_mater = Pennsylvania State University, Michigan State University
| thesis_title =
| thesis_url =
| thesis_year =
| doctoral_advisor = John Tarbell, Micheal Pishko
| academic_advisors =
| doctoral_students =
| notable_students =
| known_for =
| influences =
| influenced =
| awards =
| author_abbrev_bot =
| author_abbrev_zoo =
| spouse =
| partner =
| children =
| signature =
| signature_alt =
| website = {{URL|ainslielab.web.unc.edu}}
| footnotes =
}}

Kristy M. Ainslie is a pharmaceutical science professor at University of North Carolina at Chapel Hill in the

Eshelman School of Pharmacy. She is also joint in the UNC School of Medicine Department of Microbiology and Immunology and affiliated faculty in the UNC/NC State joint Biomedical Engineering department. Additionally, she is part of UNC's Biological and Biomedical Sciences Program (BBSP).

Background

Ainslie completed her Bachelors of Science in Chemical engineering from Michigan State University in 1999. After working as a environmental engineer at Malcolm Pirnie, she began graduate school at Penn State as a fellow in the Huck Institutes of the Life Science. In 2003, she completed her Masters of Science in Chemical engineering under John Tarbell, focusing on shear stress modulation of vascular smooth muscle cell contraction.[1][2][3][4][5] Two years later in 2005, she completed her PhD in Chemical engineering under Micheal Pishko, focusing on protein adhesion and cell responses to nanomaterials.[6][7][8][9][10] After a brief post doc at the microcantilever start-up Protiveris, she worked with Lloyd Whitman at the United States Naval Research Laboratory.[11] In 2006, she began a post doc at University of San Francisco in the Department of Bioengineering and Therapeutic Sciences under the direction of Tejal Desai. The focus of Ainslie's research at UCSF was on microfabricated oral drug delivery[12][13] carriers and immune responses to planar nanomaterials.[14][15]

Ainslie began her career as a tenure track Assistant Professor at Ohio State University in the School of Pharmacy in the Division of Pharmaceutics and Pharmaceutical Chemistry. In 2014, Ainslie moved to the University of North Carolina at Chapel Hill and the UNC Eshelman School of Pharmacy Division of Pharmacoengineering and Molecular Pharmaceutics as an Associate Professor.

Career

Ainslie has several areas of focus for her lab:

  • Advancement of acetalated dextran: Establishment of an ethanol producing version of acetalated dextran,[16] in comparison to the methanol producing version first reported by Jean Fréchet.[17][18] Exploiting the unique degradation rates of acetalated dextran, the Ainslie Lab was the first to show that fine tuning of antigen and adjuvant release can be used to optimize microparticulate vaccines.[19]
  • Antigen specific immune tolerance: One of the first to apply microparticles for autoimmune therapeutic vaccines,[20] using acetalated dextran to suppress disease related inflammation
  • Host-directed therapeutics: First identifying OSU-03012 antiparasitic activity against Leishmania donovani.[21][22] To improve the delivery of this compound, since it has a narrow therapeutic window, the Ainslie lab encapsulated it in acetalated dextran microparticles and also applied the formulation for Salmonella enterica and Francisella tularensis infection.[23][24]
  • Electrospray for vaccines: Reported the first use of electrospray for formation of protein based microparticle vaccines made of acetalated dextran.[25] The application of electrospray was then expanded to encapsulate the hydrophillic STING agonist cGAMP.[26]
  • Electrospun acetalated dextran nanofibers: Used for interstitial delivery of chemotherapeutics for glioblastoma.[27]

References

1. ^{{cite journal |last1=Sharma |first1=Ritu |last2=Yellowley |first2=Claire |last3=Civelek |first3=Mete |last4=Ainslie |first4=Kristy |last5=Hodgson |first5=Louis |last6=Tarbell |first6=John |last7=Donahue |first7=Hennry |title=Intracellular Calcium Changes in Rat Aortic Smooth Muscle Cells in Response to Fluid Flow |journal=Ann Biomed Eng |date=2002 |volume=30 |issue=3 |pages=371–8 |pmid=12051621 |pmc=4472337 |doi=10.1114/1.1470179 }}
2. ^{{cite journal |last1=Civelek |first1=Mete |last2=Ainslie |first2=Kristy |last3=Garanich |first3=Jeffery |last4=Tarbell |first4=John |title=Smooth muscle cells contract in response to fluid flow via a Ca2+-independent signaling mechanism. |journal=J Appl Physiol |date=2002 |volume=93 |issue=6 |pages=1907–17 |pmid=12391063 |doi=10.1152/japplphysiol.00988.2001 |citeseerx=10.1.1.490.2931 }}
3. ^{{cite journal |last1=Florian |first1=Jeffery |last2=Kosky |first2=Jason |last3=Ainslie |first3=Kristy |last4=Pang |first4=Zhang |last5=Dull |first5=Randall |last6=Tarbell |first6=John |title=Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. |journal=Circulation |date=2003 |volume=93 |issue=10 |pages=e136–42 |pmid=14563712 |url=http://circres.ahajournals.org/content/93/10/e136.long |accessdate=25 June 2018|doi=10.1161/01.RES.0000101744.47866.D5 }}
4. ^{{cite journal |last1=Ainslie |first1=Kristy |last2=Shi |first2=Z |last3=Garanich |first3=Jeffery |last4=Tarbell |first4=John |title=Rat aortic smooth muscle cells contract in response to serum and its components in a calcium independent manner. |journal=Ann Biomed Eng. |date=2004 |volume=32 |issue=12 |pages=1667–75 |pmid=15675680 |doi=10.1007/s10439-004-7820-7 }}
5. ^{{cite journal |last1=Ainslie |first1=Kristy |last2=Garanich |first2=Jeffery |last3=Dull |first3=Randall |last4=Tarbell |first4=John |title=Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response |journal=J Appl Physiol |date=2005 |volume=98 |issue=1 |pages=242–9 |pmid=15322072 |doi=10.1152/japplphysiol.01006.2003 }}
6. ^{{cite journal |last1=Dyer |first1=Maureen |last2=Ainslie |first2=Kristy |last3=Pishko |first3=Micheal |title=Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films. |journal=Langmuir |date=2007 |volume=23 |issue=13 |pages=7018–23 |pmid=17506587 |doi=10.1021/la7004997 }}
7. ^{{cite journal |last1=Ainslie |first1=Kristy |last2=Sharma |first2=Gurav |last3=Dyer |first3=Maureen |last4=Grimes |first4=Craig |last5=Pishko |first5=Micheal |title=Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires. |journal=Nano Letters |date=2005 |volume=5 |issue=9 |pages=1852–6 |pmid=16159237 |doi=10.1021/nl051117u }}
8. ^{{cite journal |last1=Ainslie |first1=Kristy |last2=Bachelder |first2=Eric |last3=Borka |first3=Sachin |last4=Zahr |first4=Alisar |last5=Sen |first5=Ayusman |last6=Badding |first6=John |last7=Pishko |first7=Micheal |title=Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE). |journal=Langmuir |date=2007 |volume=23 |issue=2 |pages=747–54 |pmid=17209629 |doi=10.1021/la060948s }}
9. ^{{cite journal |last1=Kristy |first1=Ainslie |last2=Bachelder |first2=Eric |last3=Sharma |first3=Gurav |last4=Grimes |first4=Craig |last5=Pishko |first5=Micheal |title=Macrophage cell adhesion and inflammation cytokines on magnetostrictive nanowires |journal=Nanotoxicology |date=2009 |volume=1 |issue=4 |page=279 |doi=10.1080/17435390701781142 }}
10. ^{{cite journal |last1=Bachelder |first1=Eric |last2=Ainslie |first2=Kristy |last3=Pishko |first3=Micheal |title=Utilizing a quartz crystal microbalance for quantifying CD4+ T cell counts |journal=Sensor Letters |date=2005 |volume=3 |issue=3 |page=211 |url=http://www.ingentaconnect.com/contentone/asp/senlet/2005/00000003/00000003/art00004 |accessdate=25 June 2018|doi=10.1166/sl.2005.029 }}
11. ^{{cite journal |last1=Stine |first1=Rory |last2=Cole |first2=Christina |last3=Ainslie |first3=Kristy |last4=Mulvaney |first4=Shawn |last5=Whitman |first5=Lloyd |title=Formation of primary amines on silicon nitride surfaces: a direct, plasma-based pathway to functionalization |journal=Langmuir |date=2007 |volume=23 |issue=8 |pages=4400–4 |pmid=17323989 |doi=10.1021/la0635653 }}
12. ^{{cite journal |last1=Ainslie |first1=Kristy |last2=Kraning |first2=Casey |last3=Desai |first3=Tejal |title=Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. |journal=Lab Chip |date=2008 |volume=8 |issue=7 |pages=1042–7 |pmid=18584077 |pmc=2969854 |doi=10.1039/b800604k }}
13. ^{{cite journal |last1=Ainslie |first1=Kristy |last2=Lowe |first2=Rachel |last3=Beaudette |first3=Tristan |last4=Petty |first4=Lamar |last5=Bachelder |first5=Eric |last6=Desai |first6=Tejal |title=Microfabricated devices for enhanced bioadhesive drug delivery: attachment to and small-molecule release through a cell monolayer under flow. |journal=Small |date=2009 |volume=5 |issue=24 |pages=2857–63 |pmid=19787677 |doi=10.1002/smll.200901254 }}
14. ^{{cite journal |last1=Kristy |first1=Ainslie |last2=Tao |first2=Sarah |last3=Popat |first3=Ketul |last4=Daniels |first4=Hugh |last5=Hardev |first5=Veeral |last6=Grimes |first6=Craig |last7=Desai |first7=Tejal |title=In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone |journal=J Biomed Mater Res A |date=2009 |volume=91 |issue=3 |pages=647–55 |pmid=18988278 |doi=10.1002/jbm.a.32262 }}
15. ^{{cite journal |last1=Ainslie |first1=Kristy |last2=Tao |first2=Sarah |last3=Popat |first3=Ketul |last4=Desai |first4=Tejal |title=In vitro immunogenicity of silicon-based micro- and nanostructured surfaces. |journal=ACS Nano |date=2008 |volume=2 |issue=5 |pages=1076–84 |pmid=19206506 |doi=10.1021/nn800071k }}
16. ^{{cite journal|last1=Kauffman|first1=KJ|last2=Do|first2=C|last3=Sharma|first3=S|last4=Gallovic|first4=MD|last5=Bachelder|first5=EM|last6=Ainslie|first6=KM|title=Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product|journal=ACS Appl Mater Interfaces|date=Aug 2012|volume=4|issue=8 |pages=4149–55|pmid=22833690|doi=10.1021/am3008888|hdl=1811/86186}}
17. ^{{cite journal|last1=Bachelder|first1=EM|last2=Beaudette|first2=TT|last3=Broaders|first3=KE|last4=Dashe|first4=J|last5=Fréchet|first5=JM|title=Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications|journal=JACS|date=Aug 2008|volume=130|issue=32|pages=10494–5|pmc=2673804|pmid=18630909|doi=10.1021/ja803947s}}
18. ^{{cite web|last1=Frechet|first1=JM|last2=Bachelder|first2=EM|last3=Beaudette|first3=TT|last4=Broaders|first4=KE|title=Acid-Degradable and Bioerodible Modified Polyhydroxylated Materials|url=https://www.google.com/patents/US20110229550|website=Google Patent}}
19. ^{{cite journal |last1=Chen |first1=Naihan |last2=Johnson |first2=Monica |last3=Collier |first3=Micheal |last4=Gallovic |first4=Matthew |last5=Johnson |first5=Monica |last6=Ainslie |first6=Kristy |title=Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. |journal=Journal of Controlled Release |date=2018 |volume=273 |pages=147–159 |pmid=29407676 |pmc=5835201 |url=https://www.sciencedirect.com/science/article/pii/S0168365918300452 |accessdate=26 June 2018|doi=10.1016/j.jconrel.2018.01.027 }}
20. ^{{cite web |last1=Ainslie |first1=Kristy |title=ENCAPSULATED ACTIVE VITAMIN D VACCINE FOR THE TREATMENT OF MULTIPLE SCLEROSIS |website=NIH RePORTER |publisher=National Institutes of Health |ref=1R21NS072813-01A1}}
21. ^{{cite journal|last1=Collier|first1=MA|last2=Peine|first2=KJ|last3=Gautum|first3=S|last4=Oghumu|first4=S|last5=Varikuti|first5=S|last6=Borteh|first6=H|last7=Papenfuss|first7=TL|last8=Satoskar|first8=AR|last9=Bachelder|first9=EM|last10=Ainslie|first10=KM|title=Host-mediated Leishmania donovani treatment using AR-12 encapsulated in acetalated dextran microparticles|journal=International Journal of Pharmaceutics|date=Feb 29, 2016|volume=499|issue=1–2|pages=186–94|pmid=26768723|pmc=5730989|doi=10.1016/j.ijpharm.2016.01.004}}
22. ^{{cite web|last1=Ainslie |display-authors=etal |title=COMPOSITIONS AND METHODS FOR INHIBITING LEISHMANIA|url=http://www.freepatentsonline.com/y2016/0120844.html|website=Free Patents Online}}
23. ^{{cite journal|last1=Hoang|first1=KV|last2=Borteh|first2=HM|last3=Rajaram|first3=MV|last4=Peine|first4=KJ|last5=Curry|first5=H|last6=Collier|first6=MA|last7=Homsy|first7=ML|last8=Bachelder|first8=EM|last9=Gunn|first9=JS|last10=Schlesinger|first10=LS|last11=Ainslie|first11=KM|title=Acetalated dextran encapsulated AR-12 as a host-directed therapy to control Salmonella infection.|journal=Int J Pharm|date=Dec 2014|volume=477|issue=1–2|pages=334–43|pmid=25447826|doi=10.1016/j.ijpharm.2014.10.022|pmc=4267924}}
24. ^{{cite journal|last1=Hoang|first1=KV|last2=Curry|first2=H|last3=Collier|first3=MA|last4=Borteh|first4=H|last5=Bachelder|first5=EM|last6=Schlesinger|first6=LS|last7=Gunn|first7=JS|last8=Ainslie|first8=KM|title=Needle-Free Delivery of Acetalated Dextran-Encapsulated AR-12 Protects Mice from Francisella tularensis Lethal Challenge|journal=Antimicrob Agents Chemother|date=Mar 25, 2016|volume=60|issue=4|pmid=26787696|doi=10.1128/AAC.02228-15|pmc=4808193|pages=2052–62}}
25. ^{{cite journal |last1=Gallovic |first1=Matthew |last2=Schully |first2=Kevin |last3=Bell |first3=Matthew |last4=Elberson |first4=Margret |last5=Palmer |first5=John |last6=Darko |first6=Christen |last7=Bachelder |first7=Eric |last8=Keane-Myers |first8=Andrea |last9=Ainslie |first9=Kristy |title=Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational Bacillus Anthracis Exposure. |journal=Adv Healthc Mater. |date=2016 |volume=5 |issue=20 |pages=2617–2627 |pmid=27594343 |doi=10.1002/adhm.201600642 }}
26. ^{{cite journal |last1=Junkins |first1=Robert |last2=Gallovic |first2=Matthew |last3=Johnson |first3=Brandon |last4=Collier |first4=Micheal |last5=Watkins-Schulz |first5=Rebekah |last6=Cheng |first6=Ning |last7=David |first7=Clement |last8=McGee |first8=Charles |last9=Sempowski |first9=Greg |last10=Shterev |first10=Ivo |last11=McKinnon |first11=Karen |last12=Bachelder |first12=Eric |last13=Ainslie |first13=Kristy |last14=Ting |first14=Jenny |title=A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination |journal=J Control Release |date=2018 |volume=270 |pages=1–13 |pmid=29170142 |pmc=5808851 |url=https://www.sciencedirect.com/science/article/pii/S016836591731026X|doi=10.1016/j.jconrel.2017.11.030 }}
27. ^{{cite journal |last1=Graham-Gurysh |first1=Elizabeth |last2=Moore |first2=Kathryn |last3=Satterlee |first3=Andrew |last4=Sheetz |first4=Kevin |last5=Lin |last6=Bachelder |first6=Eric |last7=Miller |first7=C. Ryan |last8=Hingtgen |first8=Shawn |last9=Ainslie |first9=Kristy |title=Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection |journal=Mol Pharm |date=2018 |volume=15 |issue=3 |pages=1309–1318 |pmid=29342360 |pmc=5999333 |doi=10.1021/acs.molpharmaceut.7b01114 }}

External links

  • [https://scholar.google.com/citations?user=Pq2LmAUAAAAJ&hl=en Google Scholar]
{{Authority control}}{{DEFAULTSORT:Ainslie, Kristy}}

6 : Year of birth missing (living people)|Living people|American chemical engineers|University of North Carolina at Chapel Hill faculty|Michigan State University alumni|Pennsylvania State University alumni

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 0:26:27