请输入您要查询的百科知识:

 

词条 Laguna del Maule (volcano)
释义

  1. Geography and structure

  2. Climate and vegetation

  3. Eruptive history

  4. Present day threat

  5. References

      Bibliography  

  6. External links

{{good article}}{{Use British English|date=August 2016}}{{Infobox mountain|name=Laguna del Maule|photo=Laguna del Maule - NASA Earth Observatory.jpg|photo_alt=A false colour satellite image of Laguna del Maule|photo_caption=False colour image of Laguna del Maule|map=Chile|map_alt=Location of Laguna del Maule in Chile|location=Maule Region, Chile
|coordinates = {{coord|36|3|40|S|70|29|45|W|type:mountain_region:CL_scale:100000|format=dms|display=inline,title}}
|elevation_m=2160|range=Andes
|range_coordinates =
|coordinates_ref=GNS|type=Volcanic field|volcanic_arc/belt=Southern Volcanic Zone|last_eruption=2,000 years ago}}

Laguna del Maule is a volcanic field in the Andes mountain range of Chile, close to, and partly overlapping, the Chile-Argentina frontier. The bulk of the volcanic field is in the Talca province of Chile's Maule Region. It is a segment of the Southern Volcanic Zone, part of the Andean Volcanic Belt. Many of the volcanic centres in the Laguna del Maule volcanic field formed during postglacial times, after glaciers had retreated from the area. This activity has generated cones, lava domes, lava coulees and lava flows which surround Laguna del Maule lake. The field gets its name from the lake which is also the source of the Maule river. Some of the volcanic centres were active during and before the last glaciation; at least three caldera formation events are associated with the system.

About 130 volcanic vents belong to the field and the earliest eruptions occurred 1.5 million years ago. Postglacial volcanic activity has included eruptions with simultaneous explosive and effusive components, and volcanic rocks in the field vary from basalt over andesite and dacite to rhyolite. The field was a source of obsidian with regional importance.

Between 2004 and 2007, ground inflation began in the volcanic field, indicating the intrusion of a sill beneath it. The rate of inflation is faster than those measured on other inflating volcanoes such as Uturunku in Bolivia and Yellowstone in the United States and has been accompanied by anomalies in soil gas emission and seismic activity. This pattern has created concern about the potential for impending large-scale eruptive activity.

Geography and structure

The Laguna del Maule volcanic field is centred around {{coord|36.1|S|70.5|W}}, straddling the Chilean-Argentine frontier with most of the complex on the Chilean side. The locality belongs to the Maule Region,[1] of Talca province in the Andes mountain range, close to the confluence of the Maule and Campanario rivers in the Maule's valley.[2] The city of Talca lies about {{convert|150|km}} west.[3] The Argentine section of the field is in the Mendoza and Neuquén provinces.[4] Highway 115 passes through the northern part of the volcanic field,[5] and the Paso Pehuenche mountain pass is a few kilometres northeast of the lake;[6] other than this the region is sparsely inhabited.[7]

The subduction of the Nazca plate beneath the South America plate has formed a volcanic arc about {{convert|4000|km}} long. It is subdivided into several segments distinguished by varying angles of subduction of the Nazca plate.[8] The part of the volcanic belt named the Southern Volcanic Zone alone contains at least 60 volcanoes with historical activity and three major caldera systems.[9] Major volcanoes of the Southern Volcanic Zone include from north to south: Maipo, Cerro Azul, Calabozos, Tatara-San Pedro, Laguna del Maule, Antuco, Villarrica, Puyehue-Cordon Caulle, Osorno, and Chaiten.[10] Laguna del Maule is located within a segment known as the Transitional Southern Volcanic Zone,[11] {{convert|330|km}} west of the Peru-Chile trench.[12] Volcanoes in this segment are typically located on basement blocks that have been uplifted between extensional basins.[9]

The Laguna del Maule lake lies on the crest of the Andes, within a depression with a diameter of {{convert|20|km}}.[14] The lake has a depth of {{convert|50|m}},[15] a surface area of {{convert|54|km2}},[16] and the surface is at an altitude of {{convert|2160|m}}.[5][18] The name of the volcanic field comes from the lake,[2] and the Maule river originates in the lake.[20] Terraces around the lake indicate that water levels have fluctuated in the past.[21] An eruption dated 19,000 ± 700[22]-23,300 ± 400 years ago dammed the lake {{convert|200|m}} higher than its present level. When the dam broke[23][22] 9,400 years ago,[25] a {{convert|12|km3}} lake outburst flood occurred leaving traces in the down-valley gorge such as scour.[23][22] Benches and beach bars developed on the shores of this lake,[22] which has left a shoreline around Laguna del Maule.[29]

The lake is surrounded by a number of Quaternary volcanic systems of various ages,[3] including about fourteen shield volcanoes and stratovolcanoes that have been degraded by glaciation.[23] The Laguna del Maule volcanic field covers a surface area of {{convert|500|km2}} and contains cones, lava domes, lava flows, and shield volcanoes.[1] There are 130 volcanic vents at Laguna del Maule. The lake is surrounded by 36 silicic coulees and lava domes.[10] Over {{convert|100|km2}} of the field is covered by these rocks, and volcanic ash and pumice produced by the eruptions has been found in Argentina.[6] Presently some summits around Laguna del Maule reach altitudes of {{convert|3900|m}}.[35] The volcanic field lies at an average height of {{convert|2400|m}}.[36]

Among the various structures in the volcanic field, Domo del Maule lava dome is of rhyolitic composition and generated a northward flowing lava flow that dammed the Laguna del Maule. This lava flow is joined by other lava flows from the {{lang|es|Crater Negro}}, a small cone in the southwestern sector of the volcanic field; the lavas of this cone however are andesitic and basaltic. {{lang|es|Loma de Los Espejos}} is a large {{convert|4|km}} long lava flow of acidic rocks in the northern sector of the volcanic field, close to the outlet of Laguna del Maule.[37] It consists of two lobes with a total volume of about {{convert|0.82|km3}}.[38] This flow contains obsidian and vitrophyre and crystals within the flow reflect the sunlight. The well-preserved {{lang|es|Colada de las Nieblas}} lava flow is in the extreme southwestern sector of the volcanic field. This lava flow is {{convert|300|m}} thick, {{convert|6|km}}[37]//tuff cone">tuff cone at its source.[rich rocks have been attributed to the tholeiitic series.[90] {{Strontium}} isotope ratios have been compared to the ones of Tronador volcano;[91] additional compositional similarity is found to other volcanoes close to Laguna del Maule such as Cerro Azul and Calabozos.[92] Laguna del Maule stands out for the frequency of rhyolitic rocks, compared to volcanoes farther south in the chain.[93] There are compositional trends in the region of the volcanic arc between 33°-42°, with more northerly volcanoes being more andesitic in composition while to the south basalts are more frequent.[8]

All the postglacial activity appears to originate from a shallow silicic magma chamber beneath the caldera, which acts as a trap for mafic magma,[10] preventing it from rising to the surface[96] and thus explaining the absence of postglacial mafic volcanism.[97] The early post-glacial rhyodacites contain mafic inclusions[98] implying that mafic lavas exist but do not reach the surface.[22] From {{Strontium}} isotope ratios it has been inferred that the magma is of deep origin,[91] and the rare-earth element composition shows no evidence of crustal contamination.[101] {{Neodymium}} and {{strontium}} isotope ratios indicate all rocks are derived from the same parent source,[93] with the rhyolites forming by fractional crystallization of the basic magma,[85] similar to the postulated origins of rocks from the Central Volcanic Zone.[92] Partial melting may also be the source of the rhyolites.[105] Overall the environment where the rocks formed appears to be an oxidized {{convert|760|-|850|C}} system that formed over 100,000 – 200,000 years, and was influenced by the injection of basaltic magma.[106] The rhyolitic melts may originate in a crystal rich mush beneath the volcanic field[107] and probably in at least two magma chambers.[22]

It has been suggested that Laguna del Maule is an important source of obsidian for the region, on both sides of the Andes. Finds have been made from the Pacific to Mendoza {{convert|400|km}} away from the coast,[46] as well as at archaeological sites of Neuquén province.[110] Obsidian forms sharp edges and was used by ancient societies for the production of projectiles as well as cutting instruments. In South America, obsidian was traded over large distances.[46] Obsidian has been found in the Arroyo El Pehuenche ({{coord|35|58|52|S|70|23|35|W|notes=[112]}}), Laguna Negra ({{coord|36|12|25|S|70|24|28|W|notes=[112]}}) and Laguna del Maule ({{coord|35|59|57|S|70|25|35|W|notes=[112]}}) localities.[115] These sites yield obsidians with varying properties, from large blocks at Laguna del Maule to smaller pebbles probably carried by water at Arroyo El Pehuenche.[36]

Climate and vegetation

Laguna del Maule lies at the interface between a semi-arid, temperate climate and a colder montane climate. Average yearly temperatures from 2007 to 2013 ranged {{convert|8.1|-|10.3|C}}. Cold front related precipitation falls during autumn and winter, although occasional summer storms also contribute to rainfall.[117] Laguna del Maule is subject to the rain shadow effect of mountains farther west, leading to a lack of glaciation at the numerous summits exceeding {{convert|3000|m}} in altitude around the lake.[20] Most of the lake water comes from snowmelt;[15] for much of the year the landscape around the lake is covered with snow.[12]

The area of Laguna del Maule was glaciated during the last ice age, with a maximum occurring between 25,600±1,200 and 23,300±600 years ago.[121] During this time a {{convert|80|km}} wide ice cap covered the volcano and the surrounding valleys.[25] Probably due to changes in the position of the Westerlies, after {{circa}} 23,000 years ago the glaciers retreated above Laguna del Maule.[121] The glaciation has left moraines and terraces in the area,[124] with undulating hills lying close to the outlet of the Laguna del Maule.[21] Poorly developed moraines with the appearance of tiny hills lie downstream of Laguna del Maule, and such moraines form small hills around the lake rising about {{Convert|10-20|m}} above the lake level.[20]

The landscape around Laguna del Maule is mostly desertic without trees.[12] Vegetation around Laguna del Maule is principally formed by cushion plants and sub-shrubs, with higher altitudes displaying more scattered vegetation.[15] The rocks around Laguna del Maule host a plant named Leucheria graui which has not been found elsewhere.[129]

Eruptive history

{{GeoGroup}}

Laguna del Maule has been active since 1.5 mya ago, with a total rock output of over {{convert|350|km3}}[130][6] from about 130 vents.[132] At least three caldera forming events occurred during the system's lifespan, at 1.5 mya (dacitic Laguna Sin Puerto ignimbrite, the ignimbrite is exposed northwest of Laguna del Maule lake[6]), 990,000[65]-950,000 (rhyodacitic Bobadilla caldera, the ignimbrite from this caldera-forming event borders Laguna del Maule lake in the north[18][6]) and 336,000 years ago generating welded ignimbrites.[10] This last ignimbrite is known as Cordon Constanza ignimbrite.[138] The Bobadilla caldera is centred beneath the northern shore of the Laguna del Maule,[6] and has dimensions of {{convert|12|x|8|km}}.[23] In total, volcanic output at Laguna del Maule has been estimated to be {{convert|200,000|m3/yr|ft3/yr}}, comparable to other volcanic arc systems,[141] with eruptions occurring about every 1000 years.[76] It has been inferred that each eruption lasted between 100 and more than 3000 days.[143] There are no recorded historical eruptions of Laguna del Maule.[144]

The 36 rhyodacitic lava domes and flows which surround the lake were erupted from about 24 individual vents from 25,000 years ago forwards, after the onset of deglaciation, until the last such eruption approximately 2,000 years ago.[10][132] Preceding activity includes the rhyolitic {{lang|es|Cajon Atravesado}} 712,000 years ago north of the lake,[6] the rhyodacitic {{lang|es|Cerro Negro}} 468,000–447,000 years ago in the northeastern parts of the field,[6][10] the rhyodacitic {{lang|es|Arroyo Cabeceras de Troncoso}} 203,000 years ago northwest of the lake,[6] and the unit known as "Valley unit" with basic rocks of a volume of {{convert|5|km3}}. This unit was erupted 240,000±50,000 to 200,000±70,000 years ago and in the Maule valley outcrops it appears as lava flows thinning to the top.[61] A unit of basalt pyroclastic cones and lava flows in the northwest of the field has been dated 100,000±20,000 to 170,000±20,000 years ago from two samples.[80] Other volcanic activity took place 154,000 years ago, forming the basaltic {{lang|es|Bobadilla Chica}} vent and lava north of the lake, and 152,000 years ago forming the andesitic {{lang|es|Volcan de la Calle}} vent and lava straddling the Chile-Argentina border in the eastern sector.[6] Later eruptive activity formed the rhyodacite {{lang|es|Domo del Maule}} ({{coord|36|1|45|S|70|34|35|W|notes=[154]}}) 114,000 years ago northwest of Laguna del Maule, a neighbouring rhyodacite west of Laguna del Maule dam, basaltic {{lang|es|El Candado}} ({{coord|36|0|45|S|70|33|40|W|notes=[154]}}) 63,000–62,000 years ago near the outlet of Laguna del Maule,[6][10] a rhyolite east of the outlet 38,000 ± 29,000 years ago,[158] and andesites also west of the dam 27,000–26,000 years ago named {{lang|es|Arroyo Los Mellicos}}.[6][10]

After deglaciation 23,000 - 19,000 years ago, two pulses of volcanism occurred at Laguna del Maule, the first 22,500 - 19,000 years ago and the second in the middle-late Holocene.[97] Silicic volcanic units erupted after 25,000 include young andesites on the western coast of Laguna del Maule 24,000 years ago, rhyodacitic {{lang|es|Arroyo de la Calle}} 21,000 years ago southeast of Laguna del Maule and rhyolitic {{lang|es|Loma de Los Espejos}} ({{coord|36|0|0|S|70|32|0|W|notes=[154]}}) (unit rle) 19,000 years ago in the northern part of the field,[5] the latter of which dammed the Maule River and thus increased the size of the lake.[22][18] These units have a volume of {{convert|1.7|km3}}.[106] The {{lang|es|Cerro Barrancas}} ({{coord|36|10|0|S|70|27|0|W|notes=[154]}}) centre started being active around 14,500 ± 1,500 years before present[168] and was the main site of volcanic activity between 14,500 and about 8,000 years ago.[97] After that point activity shifted and the volume output increased, with the subsequent units having a volume of {{convert|4.8|km3}}.[106] These two phases of volcanic activity occurred within 9,000 years of each other and the magmas involved may have been sourced from different magma reservoirs.[82] This phase includes the rhyolitic {{lang|es|Cerro Barrancas}} (unit rcb[172]) 7,000 years ago in the southeastern part of the field,[5] and an associated {{convert|15|km}} long pyroclastic flow,[16] rhyolitic {{lang|es|Cari Launa}} ({{coord|36|3|0|S|70|25|0|W|notes=[154]}}[6][98] which is in part flooded by the Cari Launa lake;[40] unit rcl[172]) <3,300[180]-3,500 years ago in the northeastern part of the field,[6][98] as well as rhyolitic {{lang|es|Colada Divisoria}} (unit rcd[172]) and {{lang|es|Colada Las Nieblas}} ({{coord|36|7|0|S|70|32|0|W|notes=[154]}}; unit rln[172]) 2,000 years ago in the eastern and southwestern parts of the field, respectively.[5] Other proposed dates are 23,000 years ago for the Espejos rhyolite, 14,500 years ago for the Cari Launa rhyolite, 6,400 and 3,900 years ago for the Barrancas complex and 2,200 years ago for the Colada Divisoria.[96] In addition, the unit rcb might be a compound unit of various ages.[188]

Undated postglacial units are andesitic {{lang|es|Crater Negro}} ({{coord|36|4|10|S|70|32|0|W|notes=[154]}}) scoria cone and lava flow just west of Laguna del Maule,[191] andesitic {{lang|es|Playa Oriental}} on the southeastern shore of Laguna del Maule,[192] rhyolitic {{lang|es|Arroyo de Sepulveda}} at Laguna del Maule and rhyodacitic {{lang|es|Colada Dendriforme}} (unit rcd[25]) in the western part of the field.[5] This rhyolitic flare up has no precedents in the history of the volcanic field,[96] and it is the largest such structure in the southern Andes.[18] Three mafic volcanic vents named {{lang|es|Arroyo Cabeceras de Troncoso}}, Crater 2657 and {{lang|es|Hoyo Colorado}} are also considered postglacial. The former two are andesitic, while the latter is a pyroclastic cone.[197] Mafic volcanism appears to have decreased after glacial times at Laguna del Maule, probably because such magmas were hindered from ascending by a more silicic magma system,[198] and the post-glacial volcanism has a mainly silicic composition.[97] The most recent dates for eruptions are ages of 2,500 ± 700, 1,400 ± 600 and 800 ± 600 for rhyolitic lava flows.[22]

Explosive activity including ash and pumice has accompanied a number of the postglacial eruptions, the largest is associated with Los Espejos and has been dated 23,000 years ago.[16] The deposit of this Plinian eruption reaches {{convert|4|m}} of thickness at a distance of {{convert|40|km}}.[202] White ash and pumice form layered deposits east of the Loma de Los Espejos.[37] Another explosive eruption is linked to the Barrancas centre.[106] Other such explosive events have been dated at 7,000, 4,000 and 3,200 years ago by radiocarbon dating.[202] It has been estimated that the ash and pumice deposits have a volume comparable with that of the lava flows.[6]

A tephra layer in the Argentine Caverna de las Brujas dated 7,780 ± 600 years ago has been tentatively linked to Laguna del Maule,[207] and another with a thickness of {{convert|80|cm}} {{convert|65|km}} away from Laguna del Maule is dated 765 ± 200 years ago and appears to coincide with a time with no archaeological findings in the high cordillera. Other tephras which possibly were erupted at Laguna del Maule have been found in Argentinian archaeological sites, one 7,195 ± 200 years ago at El Manzano and another 2,580 ± 250 to 3,060 ± 300 years old at Cañada de Cachi. The El Manzano tephra reaches a thickness of {{convert|3|m}} about {{convert|60|km}} away from Laguna del Maule and would have had a severe impact on Holocene human communities south of Mendoza.[208]

Present day threat

Laguna del Maule is a volcanic system that is undergoing strong deformation;[10] between 2004 and 2007 the ground in the volcanic field has been uplifting.[210] This deformation attracted the attention of the global scientific community after it was detected by radar interferometry.[1] Between January 2006 and January 2007 uplift of {{convert|18|cm/yr}} was measured,[10] with uplift during 2012 amounting to about {{convert|28|cm/yr}}.[141] Between 2007 and 2011 the uplift reached close to {{convert|1|m}}.[49] A change in the deformation pattern occurred in 2013 related to an earthquake swarm in January 2013,[215] with deformation slowing through to mid-2014.[144] Measurements in 2016 indicated that the uplift rate was {{convert|25|cm/yr}};[217] uplift has continued into 2018[97] and the total deformation has reached {{convert|1.8|m}}[219]->{{convert|2.5|m}}. This uplift is one of the largest in all volcanoes which are not in eruption; the strongest uplift worldwide was recorded during 1982–84 at Campi Flegrei in Italy with an end change of {{convert|1.8|m}}. Other actively deforming dormant volcanoes in the world are Lazufre also in Chile, Santorini in Greece during 2011–12, and Yellowstone in the United States at a rate of 1/7th that of Laguna del Maule.[141] Another South American volcano, Uturunku in Bolivia has been inflating at a pace 1/10th that of Laguna del Maule's.[222] There is evidence that earlier deformations occurred at Laguna del Maule,[141] with the lake shores having risen by about {{convert|67|m}} during the Holocene[224] possibly as a consequence of about {{convert|20|km3}} entering the magmatic system.[29]

The current uplift has its centre beneath the western segment of the ring of post-glacial lava domes,[226] more specifically beneath the southwestern sector of the lake.[215] The source of the deformation has been traced to an inflation of a sill, with dimensions of {{convert|9.0|x|5.3|km}} {{convert|5.2|km}} deep beneath the volcanic field.[222] This sill has been inflating at an average pace of {{convert|31,000,000|±|1,000,000|m3/yr|ft3/yr}} between 2007 and 2010. The rate of volume change has changed between 2011 and 2012, with an increase in the volume change rate.[229] {{As of|2016|July}}, {{convert|2,000,000|m3/yr|ft3/yr}} of magma are estimated to enter the magma chamber.[217] The average recharge rate required to explain the inflation is about {{convert|0.03|-|0.04|km3/year}}.[78] This volume change is approximately 10 to 100 times as large as the field's long term magma supply rate.[141] Gravimetric analysis has indicated that between April 2013 and January 2014, approximately {{convert|0.044|km3}} of magma intruded beneath the field.[233] The presence of a low density body beneath the volcano is also supported by the existence of a Bouguer anomaly.[234] The presence of a sill is also supported by magnetotelluric measurements indicating conductivity anomalies at depths of {{convert|4|-|5|km}} beneath the western side of the volcanic field,[235] indicating the presence of rhyolitic melt.[222] A volume of {{convert|115|km3}} of crystal-rich mush with about {{convert|30|km3}} magma embedded within the mush have been estimated. This reservoir may have moved away from the old vents towards its present-day position.[237][22]

Strong seismic activity has accompanied the deformation at Laguna del Maule, with seismic swarms recorded above the depth of the deforming sill south of the ring of lava domes, with a particular focus around {{lang|es|Colada Las Nieblas}}. A further magnitude 5.5 earthquake occurred south of the volcanic field on June 2012.[141] A major volcano-tectonic earthquake swarm occurred in January 2013,[215] possibly due to faults and underground liquids being pressurized by the intrusion of magma.[107] Swarms of earthquakes occur every two or three months and can last from half an hour to three hours.[242] Most earthquake activity appears to be of volcano-tectonic origin, with fluid flow inducing a subordinate amount of earthquakes;[243] two intersecting lineaments on the southwest corner of the lake appear to be involved.[242] The 2010 Maule earthquake, {{convert|230|km}} west of Laguna del Maule,[6] did not affect the volcanic field, with the rate of uplift remaining unchanged,[49] while other measurements indicate a change in the uplift rates at that point.[144][248] Some shallow earthquakes have been interpreted as reflecting diking and faulting on the magma chamber; the pressure within the chamber however appears to be insufficient to trigger a rupture all the way between the surface and the chamber and thus no eruption has occurred yet.[249]

Several reasons have been proposed for the inflation, including the movement of magma underground, the injection of new magma, or the action of volcanic gases and volatiles which are released by the magma.[250] Another proposal is that the inflation may be situated in a hydrothermal system[251] although there is little evidence for the existence of such a system at Laguna del Maule, unless the {{lang|es|Baños Campanario}} {{convert|15|km}} away are part of one.[252] {{chem|C|O|2}} anomalies have also been found around Laguna del Maule,[233] possibly triggered by the stress of the inflation activating old faults.[251] These anomalies are concentrated on the northern lakeshore. Such {{chem|C|O|2}} may indicate that the inflation is of mafic composition, as rhyolite only poorly dissolves {{chem|C|O|2}}.[98] Gravity change measurements also show an interaction between magma source, faults and the hydrothermal system.[256]

This uplift has been a cause of concern in light of the history of explosive activity of the volcanic field,[16] with 50 eruptions in the last 20,000 years;[258] the current uplift may be the prelude of a large rhyolitic eruption.[259] In particular, the scarce fumarolic activity implies that a large amount of gas is trapped within the magma reservoir, increasing the hazard of an explosive eruption.[260] The prospect of renewed volcanic activity at Laguna del Maule has caused concerns among the authorities and inhabitants of the region[259] as a major eruption would have a serious impact on Argentina and Chile,[202] including the formation of lava domes, lava flows, pyroclastic flows near the lake, ash fall at larger distances[258] and lahars;[7] it is not clear if such an eruption would fit the pattern set by Holocene eruptions or would be a larger event.[106] Laguna del Maule is considered to be one of the most dangerous volcanoes of the Southern Andean volcanic belt.[130] In March 2013, the Southern Andean Volcano Observatory declared a "yellow alert" for the volcano in light of the deformation and earthquake activity,[77] and was later supplemented with an "early" warning later withdrawn in January 2017.[268] The Chilean National Geology and Mining Service monitors the volcano.[269]

References

1. ^{{cite journal|last1=Pedroza|first1=Viviana|last2=Le Roux|first2=Jacobus P.|last3=Gutiérrez|first3=Néstor M.|last4=Vicencio|first4=Vladimir E.|date=2017|title=Stratigraphy, sedimentology, and geothermal reservoir potential of the volcaniclastic Cura-Mallín succession at Lonquimay, Chile|url=|journal=Journal of South American Earth Sciences|volume=77|issue=|pages=1–20|doi=10.1016/j.jsames.2017.04.011|access-date=|bibcode=2017JSAES..77....1P }}
2. ^Cáceres, Castruccio and Parada 2018, p.30
3. ^Cáceres, Castruccio and Parada 2018, p.26
4. ^Cáceres, Castruccio and Parada 2018, p.14
5. ^Cáceres, Castruccio and Parada 2018, p.13
6. ^Cáceres, Castruccio and Parada 2018, p.12
7. ^Cáceres, Castruccio and Parada 2018, p.11
8. ^Cáceres, Castruccio and Parada 2018, p.5
9. ^Cáceres, Castruccio and Parada 2018, p.4
10. ^Cáceres, Castruccio and Parada 2018, p.3
11. ^Cáceres, Castruccio and Parada 2018, p.2
12. ^Gerbault et al. 2018, p.19
13. ^Gerbault et al. 2018, p.18
14. ^{{Cite journal|last=Miller|first=C. A.|last2=Le Mével|first2=H.|last3=Currenti|first3=G.|last4=Williams-Jones|first4=G.|last5=Tikoff|first5=B.|date=2017-04-01|title=Microgravity changes at the Laguna del Maule volcanic field: Magma-induced stress changes facilitate mass addition|journal=Journal of Geophysical Research: Solid Earth|language=en|volume=122|issue=4|pages=2017JB014048|doi=10.1002/2017jb014048|issn=2169-9356|bibcode=2017JGRB..122.3179M}}
15. ^{{cite journal|last1=Pritchard|first1=M. E.|last2=Mather|first2=T. A.|last3=McNutt|first3=S. R.|last4=Delgado|first4=F. J.|last5=Reath|first5=K.|title=Thoughts on the criteria to determine the origin of volcanic unrest as magmatic or non-magmatic|journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences|date=25 February 2019|volume=377|issue=2139|pages=20180008|doi=10.1098/rsta.2018.0008}}
16. ^Feigl et al. 2018, p.4
17. ^Feigl et al. 2018, p.2
18. ^Feigl et al. 2018, p.1
19. ^Andersen et al. 2018, p.68
20. ^Andersen et al. 2018, p.59
21. ^Andersen et al. 2018, p.58
22. ^{{cite web|title=Complejo Volcánico Laguna del Maule|url=http://www.sernageomin.cl/complejo-volcanico-laguna-del-maule/|website=SERNAGEOMIN|accessdate=19 February 2018|language=es}}
23. ^{{cite news|title=Se cancela Alerta Temprana Preventiva para la comuna de San Clemente por actividad del complejo volcánico Laguna del Maule|url=http://www.onemi.cl/alerta/se-levanta-alerta-amarilla-y-declara-alerta-temprana-preventiva-para-la-comuna-de-san-clemente-por-actividad-volcanica/|accessdate=19 February 2018|agency=ONEMI|date=13 January 2017}}
24. ^{{cite journal|last1=Andersen|first1=Nathan L.|last2=Singer|first2=Brad S.|last3=Jicha|first3=Brian R.|last4=Beard|first4=Brian L.|last5=Johnson|first5=Clark M.|last6=Licciardi|first6=Joseph M.|title=Pleistocene to Holocene Growth of a Large Upper Crustal Rhyolitic Magma Reservoir beneath the Active Laguna del Maule Volcanic Field, Central Chile|journal=Journal of Petrology|date=1 January 2017|volume=58|issue=1|pages=85–114|doi=10.1093/petrology/egx006|url=https://academic.oup.com/petrology/article/58/1/85/3072153|language=en|issn=0022-3530|bibcode=2017JPet...58...85A}}
25. ^Miller et al. 2017, p.25
26. ^Miller et al. 2017, p.22
27. ^Miller et al. 2017, p.16
28. ^Miller et al. 2017, p.15
29. ^Cardona et al. 2018, p.9
30. ^Cardona et al. 2018, p.4
31. ^Cardona et al. 2018, p.2
32. ^Cardona et al. 2018, p.1
33. ^{{Google maps|url=https://www.google.com/maps/place/36%C2%B003'40.0%22S+70%C2%B029'45.0%22W/@-36.0852008,-70.4885358,11.04z/data=!4m5!3m4!1s0x0:0x0!8m2!3d-36.061111!4d-70.495833|title=Laguna del Maule|accessdate=3 August 2016}}
34. ^{{cite web|last1=Sruoga|first1=P.|last2=Elissondo|first2=M.|title=COMPLEJO VOLCÁNICO LAGUNA DEL MAULE (36° 05' S, 70° 30' O): HISTORIA ERUPTIVA POSTGLACIAL Y EVALUACIÓN PRELIMINAR DE SU PELIGROSIDAD EN ARGENTINA|url=http://www.cnea.gov.ar/cac/ices/encuentros/eices-11/Acta%20De%20resumenes%20.pdf|website=cnea.gov.ar|publisher=Comisión Nacional de Energía Atómica|accessdate=12 July 2016|location=Malargue|page=97|language=es|date=2016}}
35. ^{{Cite GVP|vn=357061}}, Synonyms & Subfeatures
36. ^{{cite journal|last1=Stern|first1=Charles R.|title=Active Andean volcanism: its geologic and tectonic setting|url=http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-02082004000200001|journal=Revista geológica de Chile|date=December 2004|volume=31|issue=2|doi=10.4067/S0716-02082004000200001}}
37. ^Hildreth et al., 2009–2010, p.65
38. ^Hildreth et al., 2009–2010, p.61
39. ^Hildreth et al., 2009–2010, p.60
40. ^Hildreth et al., 2009–2010, p.37
41. ^Hildreth et al., 2009–2010, p.11
42. ^Hildreth et al., 2009–2010, p.5
43. ^Figueroa 1988, p.10
44. ^Figueroa 1988, p.8
45. ^Figueroa 1988, p.7
46. ^{{cite journal|last1=Durán|first1=Victor|last2=Mikkan|first2=Raúl|title=Impacto del volcanismo holocénico sobre el poblamiento humano del sur de Mendoza (Argentina)|journal=Intersecciones en Antropología|date=December 2009|volume=10|issue=2|url=http://www.scielo.org.ar/scielo.php?pid=S1850-373X2009000200009&script=sci_arttext|accessdate=9 July 2016|language=es|issn=1850-373X}}
47. ^Singer et al. 2014, p.9
48. ^Singer et al. 2014, p.8
49. ^Singer et al. 2014, p.7
50. ^Singer et al. 2014, p.6
51. ^10 11 12 13 14 15 16 Singer et al. 2014, p.5
52. ^Singer et al. 2014, p.4
53. ^Carrevedo et al. 2015, p.958
54. ^Carrevedo et al. 2015, p.957
55. ^{{cite web|last1=Mourgues|first1=F. Amaro|last2=Schilling|first2=Manuel|last3=Castro|first3=Consuelo|title=Propuesta de definición de los Contextos Geológicos Chilenos para la caracterización del patrimonio geo lógico nacional|url=http://biblioserver.sernageomin.cl/opac/DataFiles/14127_pp_890_892.pdf|website=SERNAGEOMIN|accessdate=8 July 2016|page=891|language=es|date=2012}}
56. ^Amigo et al. 2012, p.464
57. ^Amigo et al. 2012, p.463
58. ^{{cite journal|last1=Sanchez-Alfaro|first1=Pablo|last2=Sielfeld|first2=Gerd|last3=Campen|first3=Bart Van|last4=Dobson|first4=Patrick|last5=Fuentes|first5=Víctor|last6=Reed|first6=Andy|last7=Palma-Behnke|first7=Rodrigo|last8=Morata|first8=Diego|title=Geothermal barriers, policies and economics in Chile – Lessons for the Andes|journal=Renewable and Sustainable Energy Reviews|date=November 2015|volume=51|page=1395|doi=10.1016/j.rser.2015.07.001|url=http://repositorio.uchile.cl/bitstream/2250/136093/1/Geothermal-barriers-policies-and-economics-in-Chile.pdf}}
59. ^{{cite journal|last1=Perkins|first1=Jonathan P.|last2=Finnegan|first2=Noah J.|last3=Henderson|first3=Scott T.|last4=Rittenour|first4=Tammy M.|title=Topographic constraints on magma accumulation below the actively uplifting Uturuncu and Lazufre volcanic centers in the Central Andes|journal=Geosphere|date=16 June 2016|volume=12|issue=4|page=16|doi=10.1130/GES01278.1|bibcode=2016Geosp..12.1078P}}
60. ^{{Cite journal|last1=Andersen|first1=N.L.|last2=Singer|first2=B.S.|last3=Jicha|first3=B.R.|last4=Hildreth|first4=E.W.|last5=Fierstein|first5=J.|last6=Rogers|first6=N.W.|title=Evolution of Rhyolite at Laguna del Maule, a Rapidly Inflating Volcanic Field in the Southern Andes|journal=AGU Fall Meeting Abstracts|volume=2012|pages=V31C–2804|date=December 2012|bibcode=2012AGUFM.V31C2804A}}
61. ^{{Cite journal|last1=Le Mevel|first1=H.|last2=Cordova|first2=L.|last3=Ali|first3=S.T.|last4=Feigl|first4=K.L.|last5=DeMets|first5=C.|last6=Williams-Jones|first6=G.|last7=Tikoff|first7=B.|last8=Singer|first8=B.S.|title=Unrest within a large rhyolitic magma system at Laguna del Maule volcanic field (Chile) from 2007 through 2013: geodetic measurements and numerical models|journal=AGU Fall Meeting Abstracts|volume=2013|pages=V51E–2728|date=December 2013|bibcode=2013AGUFM.V51E2728L}}
62. ^{{cite journal|last1=Singer|first1=Brad|last2=Hildreth|first2=Wes|last3=Vincze|first3=Yann|title=Ar/Ar evidence for early deglaciation of the central Chilean Andes|journal=Geophysical Research Letters|date=1 June 2000|volume=27|issue=11|page=1664|doi=10.1029/1999GL011065|bibcode=2000GeoRL..27.1663S}}
63. ^{{cite journal|last1=Katinas|first1=Liliana|last2=Tellería|first2=María Cristina|last3=Crisci|first3=Jorge V.|title=A New Species of Leucheria (Asteraceae, Mutisieae) from Chile|journal=Novon: A Journal for Botanical Nomenclature|date=2 September 2008|volume=18|issue=3|page=368|doi=10.3417/2006108}}
64. ^{{cite journal|last1=Valenzuela Fuentes|first1=Francisca Noemi|title=Energía geotérmica y su implementación en Chile|journal=Revista Interamericana de Ambiente y Turismo|date=2011|volume=7|issue=1|page=7|archive-url=https://web.archive.org/web/20180423002246/http://riat.utalca.cl/index.php/test/article/viewFile/115/70|archive-date=23 April 2018|url=http://riat.utalca.cl/index.php/test/article/view/115|accessdate=8 July 2016|language=es}}
65. ^{{cite journal|last1=Salas|first1=Pablo A.|last2=Rabbia|first2=Osvaldo M.|last3=Hernández|first3=Laura B.|last4=Ruprecht|first4=Philipp|title=Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S–70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile|journal=International Journal of Earth Sciences|volume=106|issue=3|pages=1107|date=27 June 2016|doi=10.1007/s00531-016-1357-5|bibcode=2017IJEaS.106.1107S}}
66. ^{{cite journal|last1=Kaplan|first1=Michael R.|last2=Ackert|first2=Robert P.|last3=Singer|first3=Brad S.|last4=Douglass|first4=Daniel C.|last5=Kurz|first5=Mark D.|title=Cosmogenic nuclide chronology of millennial-scale glacial advances during O-isotope stage 2 in Patagonia|journal=Geological Society of America Bulletin|date=2004|volume=116|issue=3|page=319|doi=10.1130/B25178.1|bibcode=2004GSAB..116..308K}}
67. ^Holm et al. 2014, p.9
68. ^Holm et al. 2014, p.3
69. ^Le Mével et al. 2015, p.6595
70. ^Le Mével et al. 2015, p.6594
71. ^Le Mével et al. 2015, p.6593
72. ^{{Cite journal|last1=Fierstein|first1=J.|last2=Sruoga|first2=P.|last3=Amigo|first3=A.|last4=Elissondo|first4=M.|last5=Rosas|first5=M.|title=Postglacial eruptive history of Laguna del Maule volcanic field in Chile, from fallout stratigraphy in Argentina|journal=AGU Fall Meeting Abstracts|volume=2012|pages=V31F–03|date=December 2012|bibcode=2012AGUFM.V31F..03F}}
73. ^{{Cite journal|last1=Le Mevel|first1=H.|last2=Feigl|first2=K.|last3=Ali|first3=T.|last4=Cordova V.|first4=M.L.|last5=De Mets|first5=C.|last6=Singer|first6=B.S.|title=Rapid uplift during 2007–2012 at Laguna del Maule volcanic field, Andean Southern Volcanic Zone, Chile|journal=AGU Fall Meeting Abstracts|volume=2012|pages=V31B–2786|date=December 2012|bibcode=2012AGUFM.V31B2786L}}
74. ^{{Cite journal|last1=Wright|first1=H.M.N.|last2=Fierstein|first2=J.|last3=Amigo|first3=A.|last4=Miranda|first4=J.|title=Vesicularity variation to pyroclasts from silicic eruptions at Laguna del Maule volcanic complex, Chile|journal=AGU Fall Meeting Abstracts|volume=2014|pages=V21B–4753|date=December 2014|bibcode=2014AGUFM.V21B4753W}}
75. ^Brüggen 1929, p.17
76. ^{{cite web|last1=Hickson|first1=Catherine|last2=Rodríguez|first2=Carolina|last3=Sielfeld|first3=Gerd|last4=Selters|first4=John|last5=Ferraris|first5=Fernando|last6=Henriquez|first6=Rene|title=Mariposa Geothermal System: A Large Geothermal Resource in Central Chile (320MWe inferred)|url=http://biblioteca.sernageomin.cl/opac/DataFiles/14127_pp_583_585.pdf|website=SERNAGEOMIN|publisher=8th Chilean Geological Congress|accessdate=7 July 2016|location=Antofagasta|page=583|date=2012}}
77. ^{{Cite journal|last1=Andersen|first1=N.|last2=Costa Rodriguez|first2=F.|last3=Singer|first3=B.S.|title=Timescales of Magmatic Processes Preceding Eruption in a Large, Extraordinarily Restless, Silicic Magma System|journal=AGU Fall Meeting Abstracts|volume=2014|pages=V31F–07|date=December 2014|bibcode=2014AGUFM.V31F..07A}}
78. ^{{Cite journal|last1=Andersen|first1=N.|last2=Singer|first2=B.S.|last3=Jicha|first3=B.R.|last4=Fierstein|first4=J.|last5=Vasquez|first5=J.A.|title=The Development of a Restless Rhyolite Magma Chamber at Laguna del Maule, Chile|journal=AGU Fall Meeting Abstracts|volume=2013|pages=V51C–2676|date=December 2013|bibcode=2013AGUFM.V51C2676A}}
79. ^{{Cite journal|last1=Miller|first1=C.A.|last2=Williams-Jones|first2=G.|last3=Le Mevel|first3=H.|last4=Tikoff|first4=B.|title=Widespread Gravity Changes and CO2 Degassing at Laguna Del Maule, Chile, Accompanying Rapid Uplift|journal=AGU Fall Meeting Abstracts|volume=2014|pages=V41B–4811|date=December 2014|bibcode=2014AGUFM.V41B4811M}}
80. ^{{Cite journal|last1=Sielfeld|first1=G.|last2=Cembrano|first2=J.M.|title=Oblique-to-the-orogen fault systems and it causal relationship with volcanism and geothermal activity in Central Southern Chile: Insights on ENE and NW regional lineaments|journal=AGU Fall Meeting Abstracts|volume=2013|pages=T23E–2642|date=December 2013|bibcode=2013AGUFM.T23E2642S}}
81. ^{{cite journal|last1=Peña-Monné|first1=José Luis|last2=Sancho-Marcén|first2=Carlos|last3=Durán|first3=Víctor|last4=Mikkan|first4=Raúl|title=Geoarchaeological reconstruction of the Caverna de las Brujas (Mendoza, Argentina) for the planning of an archaeological intervention|journal=Quaternary International|date=October 2013|volume=308–309|page=268|doi=10.1016/j.quaint.2012.06.025|bibcode=2013QuInt.308..265P}}
82. ^{{cite web|last1=Dungan|first1=D.A.|last2=Langmuir|first2=C.H.|last3=Spikings|first3=R.|last4=Leeman|first4=W.P.|last5=Goldstein|first5=S.|last6=Davidson|first6=J.P.|last7=Costa|first7=F.|last8=Selles|first8=D.|last9=Bachmann|first9=O.|title=Assimilative recycling of the plutonic roots of Andean arc volcanoes: Rates, physical mechanisms, and geochemical consequences|url=https://www.researchgate.net/publication/32967425|website=Researchgate|publisher=6th International Symposium on Andean Geodynamic|accessdate=7 July 2016|location=Barcelona|page=240|date=2015}}
83. ^{{cite journal|last1=Reyes|first1=J.|last2=Morales-Esteban|first2=A.|last3=González|first3=E.|last4=Martínez-Álvarez|first4=F.|title=Comparison between Utsu's and Vere-Jones' aftershocks model by means of a computer simulation based on the acceptance–rejection sampling of von Neumann|journal=Tectonophysics|date=July 2016|volume=682|page=113|doi=10.1016/j.tecto.2016.06.005|bibcode=2016Tectp.682..108R}}
84. ^{{cite web|last1=Lahsen|first1=Alfredo|last2=Muñoz|first2=Nelson|last3=Parada|first3=Miguel Angel|title=Geothermal Development in Chile|url=http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0118.pdf|website=geothermal-energy.org|publisher=Proceedings World Geothermal Congress 2010|accessdate=7 July 2016|location=Bali|page=2|date=29 April 2010}}
85. ^Giesso et al. 2011, p.10
86. ^Giesso et al. 2011, p.6
87. ^Giesso et al. 2011, p.5
88. ^{{cite journal|last1=Barberena|first1=Ramiro|last2=Borrazzo|first2=Karen|last3=Rughini|first3=Agustina A|last4=Romero|first4=Guadalupe|last5=Pompei|first5=M. Paz|last6=Llano|first6=Carina|last7=de Porras|first7=M. Eugenia|last8=Durán|first8=Víctor|last9=Stern|first9=Charles R|last10=Re|first10=Anahí|last11=Estrella|first11=Diego|last12=Forasiepe|first12=Analía|last13=Fernández|first13=Fernándo J|last14=Chidiak|first14=Manuel|last15=Acuña|first15=Luis|last16=Gasco|first16=Alejandra|last17=Quiroga|first17=María Nella|title=Perspectivas arqueológicas para Patagonia Septentrional: Sitio Cueva Huenul 1 (Provincia del Neuquén, Argentina)|journal=Magallania (Punta Arenas)|date=2015|volume=43|issue=1|pages=137–163|doi=10.4067/S0718-22442015000100009}}
89. ^{{cite journal|last1=Davidson|first1=Jon P.|last2=Dungan|first2=Michael A.|last3=Ferguson|first3=Kurt M.|last4=Colucci|first4=Michael T.|title=Crust-magma interactions and the evolution of arc magmas: The San Pedro–Pellado volcanic complex, southern Chilean Andes|journal=Geology|volume=15|issue=5|page=443|doi=10.1130/0091-7613(1987)15<443:CIATEO>2.0.CO;2|year=1987|bibcode=1987Geo....15..443D}}
90. ^{{cite journal|last1=Hildreth|first1=Wes|last2=Singer|first2=Brad|last3=Godoy|first3=Estanislao|last4=Munizaga|first4=Francisco|title=The age and constitution of Cerro Campanario, a mafic stratovolcano in the Andes of Central Chile|journal=Revista Geológica de Chile|date=July 1998|volume=25|issue=1|doi=10.4067/S0716-02081998000100002}}
91. ^{{cite journal|last1=HILDRETH|first1=WES|last2=GRUNDER|first2=ANITA L.|last3=DRAKE|first3=ROBERT E.|title=The Loma Seca Tuff and the Calabozos caldera: A major ash-flow and caldera complex in the southern Andes of central Chile|journal=Geological Society of America Bulletin|volume=95|issue=1|page=48|doi=10.1130/0016-7606(1984)95<45:TLSTAT>2.0.CO;2|year=1984|bibcode=1984GSAB...95...45H}}
92. ^{{cite journal|last1=Pritchard|first1=M. E.|last2=Jay|first2=J. A.|last3=Aron|first3=F.|last4=Henderson|first4=S. T.|last5=Lara|first5=L. E.|title=Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake|journal=Nature Geoscience|date=1 July 2013|volume=6|issue=8|page=634|doi=10.1038/ngeo1855|bibcode=2013NatGe...6..632P}}
93. ^{{cite journal|last1=Romeuf|first1=Natalie|last2=Aguirre|first2=Luis|last3=Soler|first3=Pierre|last4=Feraud|first4=Gilbert|last5=Jaillard|first5=Etienne|last6=Ruffet|first6=Gilles|title=Middle Jurassic volcanism in the Northern and Central Andes|journal=Revista Geológica de Chile|date=1995|volume=22|issue=2|page=256|url=http://www.rgeologica.equipu.cl/index.php/revista1/article/view/1487|accessdate=6 July 2016}}
94. ^Frey et al. 1984, p.146
95. ^Frey et al. 1984, p.145
96. ^Frey et al. 1984, p.144
97. ^Frey et al. 1984, p.142
98. ^Frey et al. 1984, p.139
99. ^Frey et al. 1984, p.136
100. ^Frey et al. 1984, p.135
101. ^Frey et al. 1984, p.134
102. ^Frey et al. 1984, p.133
103. ^Munizaga et al. 1976, p.149
104. ^Munizaga et al. 1976, p.148
105. ^Munizaga et al. 1976, p.146
106. ^Feigl et al. 2013, p.899
107. ^Feigl et al. 2013, p.898
108. ^Feigl et al. 2013, p.897
109. ^Feigl et al. 2013, p.894
110. ^Feigl et al. 2013, p.887
111. ^10 11 12 13 Feigl et al. 2013, p.886
112. ^Feigl et al. 2013, p.885
113. ^{{cite journal|last1=Durán|first1=Víctor|last2=Giesso|first2=Martín|last3=Glascock|first3=Michael|last4=Neme|first4=Gustavo|last5=Gil|first5=Adolfo|last6=Sanhueza R|first6=Lorena|title=Estudio de fuentes de aprovisionamiento y redes de distribución de obsidiana durante el Holoceno Tardío en el sur de Mendoza (Argentina)|journal=Estudios Atacameños|date=2004|issue=28|doi=10.4067/S0718-10432004002800004|language=es|issn=0718-1043}}
[2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113]
}}

Bibliography

  • {{cite journal|last1=Andersen|first1=Nathan L.|last2=Singer|first2=Brad S.|last3=Costa|first3=Fidel|last4=Fournelle|first4=John|last5=Herrin|first5=Jason S.|last6=Fabbro|first6=Gareth N.|title=Petrochronologic perspective on rhyolite volcano unrest at Laguna del Maule, Chile|journal=Earth and Planetary Science Letters|date=1 July 2018|volume=493|pages=57–70|doi=10.1016/j.epsl.2018.03.043|url=https://www.sciencedirect.com/science/article/pii/S0012821X18301754|issn=0012-821X}}
  • {{cite web|last1=Amigo|first1=Álvaro|last2=Fierstein|first2=Judy|last3=Sruoga|first3=Patricia|title=Avances en el estudio tefrocronológico post-glacial del complejo volcánico Laguna del Maule|url=http://biblioserver.sernageomin.cl/opac/DataFiles/14127_pp_463_464.pdf|website=SERNAGEOMIN|accessdate=8 July 2016|date=2012|language=es}}
  • {{cite journal|last1=Brüggen|first1=J.|title=Zur Glazialgeologie der chilenischen Anden|journal=Geologische Rundschau|date=April 1929|volume=20|issue=1|pages=1–35|doi=10.1007/BF01805072|bibcode=1929GeoRu..20....1B}}
  • {{cite journal|last1=Cáceres|first1=Francisco|last2=Castruccio|first2=Ángelo|last3=Parada|first3=Miguel A.|title=Morphology, Effusion Rates, and Petrology of Postglacial Lavas of Laguna del Maule Volcanic Field, Chilean Andes, and Implications for Their Plumbing System|journal=Geochemistry, Geophysics, Geosystems|date=2018|volume=19|issue=12|doi=10.1029/2018GC007817|language=en|issn=1525-2027}}
  • {{cite journal|last1=Cardona|first1=Carlos|last2=Tassara|first2=Andrés|last3=Gil-Cruz|first3=Fernando|last4=Lara|first4=Luis|last5=Morales|first5=Sergio|last6=Kohler|first6=Paulina|last7=Franco|first7=Luis|title=Crustal seismicity associated to rpid surface uplift at Laguna del Maule Volcanic Complex, Southern Volcanic Zone of the Andes|journal=Journal of Volcanology and Geothermal Research|volume=353|pages=83–94|date=January 2018|doi=10.1016/j.jvolgeores.2018.01.009|url=https://www.sciencedirect.com/science/article/pii/S0377027317302767|language=en|issn=0377-0273|bibcode=2018JVGR..353...83C}}
  • {{cite journal|last1=Carrevedo|first1=M. L.|last2=Frugone|first2=M.|last3=Latorre|first3=C.|last4=Maldonado|first4=A.|last5=Bernardez|first5=P.|last6=Prego|first6=R.|last7=Cardenas|first7=D.|last8=Valero-Garces|first8=B.|title=A 700-year record of climate and environmental change from a high Andean lake: Laguna del Maule, central Chile (36 S)|journal=The Holocene|date=16 March 2015|volume=25|issue=6|pages=956–972|doi=10.1177/0959683615574584|bibcode=2015Holoc..25..956C|hdl=10261/117688}}
  • {{cite journal|last1=Feigl|first1=K. L.|last2=Le Mevel|first2=H.|last3=Tabrez Ali|first3=S.|last4=Cordova|first4=L.|last5=Andersen|first5=N. L.|last6=DeMets|first6=C.|last7=Singer|first7=B. S.|title=Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic zone (Chile) 2007–2012|journal=Geophysical Journal International|date=6 December 2013|volume=196|issue=2|pages=885–901|doi=10.1093/gji/ggt438|bibcode=2014GeoJI.196..885F}}
  • {{cite journal|last1=Feigl|first1=Kurt L.|last2=Diefenbach|first2=Angela K.|last3=Andersen|first3=Nathan L.|last4=Garibaldi|first4=Nicolas|last5=Tikoff|first5=Basil|last6=Córdova|first6=Loreto|last7=Licciardi|first7=Joseph M.|last8=Mével|first8=Hélène Le|last9=Singer|first9=Brad S.|title=Geomorphic expression of rapid Holocene silicic magma reservoir growth beneath Laguna del Maule, Chile|journal=Science Advances|date=1 June 2018|volume=4|issue=6|pages=eaat1513|doi=10.1126/sciadv.aat1513|pmid=29963632|url=http://advances.sciencemag.org/content/4/6/eaat1513.abstract|language=en|issn=2375-2548}}
  • {{cite journal|last1=Figueroa|first1=Luis Velozo|title=Características Geomorfológicas del Area de la Laguna del Maule, VII Región|journal=Revista de Geografía Norte Grande|date=1988|volume=15|pages=7–10|url=http://revistanortegrande.cl/archivos/15/02_15_1988.pdf|accessdate=12 July 2016|language=es|archive-url=https://web.archive.org/web/20160819181916/http://revistanortegrande.cl/archivos/15/02_15_1988.pdf|archive-date=2016-08-19|dead-url=yes|df=}}
  • {{cite journal|last1=Frey|first1=Frederick A.|last2=Gerlach|first2=David C.|last3=Hickey|first3=Rosemary L.|authorlink4=Leopoldo López Escobar|last4=Lopez-Escobar|first4=Leopoldo|last5=Munizaga-Villavicencio|first5=Francisco|title=Petrogenesis of the Laguna del Maule volcanic complex, Chile (36° S)|journal=Contributions to Mineralogy and Petrology|date=November 1984|volume=88|issue=1–2|pages=133–149|doi=10.1007/BF00371418|bibcode=1984CoMP...88..133F}}
  • {{cite journal|last1=Gerbault|first1=Muriel|last2=Hassani|first2=Riad|last3=Lizama|first3=Camila Novoa|last4=Souche|first4=Alban|title=Three-Dimensional Failure Patterns Around an Inflating Magmatic Chamber|journal=Geochemistry, Geophysics, Geosystems|date=2018|volume=19|issue=3|pages=749–771|doi=10.1002/2017GC007174|language=en|issn=1525-2027|url=https://hal.archives-ouvertes.fr/hal-01745103/file/Gerbault_etal_3Dchambers_accepted18.pdf}}
  • {{cite journal|last1=GIESSO|first1=M.|last2=DURÁN|first2=V.|last3=NEME|first3=G.|last4=GLASCOCK|first4=M. D.|last5=CORTEGOSO|first5=V.|last6=GIL|first6=A.|last7=SANHUEZA|first7=L.|title=A STUDY OF OBSIDIAN SOURCE USAGE IN THE CENTRAL ANDES OF ARGENTINA AND CHILE|journal=Archaeometry|date=February 2011|volume=53|issue=1|pages=1–21|doi=10.1111/j.1475-4754.2010.00555.x}}
  • {{cite web|last1=Hildreth|first1=Wes|last2=Godoy|first2=Estanislao|last3=Fierstein|first3=Judy|last4=Singer|first4=Brad|title=Laguna del Maule Volcanic Field, Eruptive history of a Quaternary basalt-to-rhyolite distributed volcanic field on the Andean rangecrest in central Chile|url=http://www.geology.wisc.edu/~pesicek/LdM/Hildreth_in_press.pdf|website=Department of Geoscience, University of Wisconsin, Madison|publisher=Servicia Nacional de Geologia y Mineria Boletin 63|accessdate=12 July 2016|page=145|date=2009–2010|deadurl=yes|archiveurl=https://web.archive.org/web/20151222173519/http://www.geology.wisc.edu/~pesicek/LdM/Hildreth_in_press.pdf|archivedate=22 December 2015|df=}}
  • {{cite journal|last1=Holm|first1=Paul Martin|last2=Søager|first2=Nina|last3=Dyhr|first3=Charlotte Thorup|last4=Nielsen|first4=Mia Rohde|title=Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust|journal=Contributions to Mineralogy and Petrology|date=11 May 2014|volume=167|issue=5|doi=10.1007/s00410-014-1004-8|bibcode=2014CoMP..167.1004H}}
  • {{cite journal|last1=Le Mével|first1=Hélène|last2=Feigl|first2=Kurt L.|last3=Córdova|first3=Loreto|last4=DeMets|first4=Charles|last5=Lundgren|first5=Paul|title=Evolution of unrest at Laguna del Maule volcanic field (Chile) from InSAR and GPS measurements, 2003 to 2014|journal=Geophysical Research Letters|date=28 August 2015|volume=42|issue=16|pages=6590–6598|doi=10.1002/2015GL064665|bibcode=2015GeoRL..42.6590L}}
  • {{cite journal|last1=Miller|first1=Craig A.|last2=Williams-Jones|first2=Glyn|last3=Fournier|first3=Dominique|last4=Witter|first4=Jeff|title=3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile|journal=Earth and Planetary Science Letters|date=February 2017|volume=459|pages=14–27|doi=10.1016/j.epsl.2016.11.007|url=https://www.sciencedirect.com/science/article/pii/S0012821X16306410|language=en|issn=0012-821X|bibcode=2017E&PSL.459...14M}}
  • {{cite web|last1=Munizaga|first1=Francisco|last2=Mantovani|first2=Marta|title=Razones iniciales Sr-87/Sr-86 de rocas volcanicas pertenecientes al complejo "Laguna del Maule", Chile central|url=http://biblioserver.sernageomin.cl/opac/DataFiles/4912ppF145_F152.pdf|website=SERNAGEOMIN|publisher=First Chilean Geological Congress|accessdate=4 July 2016|location=Santiago|language=es|date=7 August 1976}}
  • {{cite journal|last1=Singer|first1=Brad S.|last2=Andersen|first2=Nathan L.|last3=Le Mével|first3=Hélène|last4=Feigl|first4=Kurt L.|last5=DeMets|first5=Charles|last6=Tikoff|first6=Basil|last7=Thurber|first7=Clifford H.|last8=Jicha|first8=Brian R.|last9=Cardona|first9=Carlos|last10=Córdova|first10=Loreto|last11=Gil|first11=Fernando|last12=Unsworth|first12=Martyn J.|last13=Williams-Jones|first13=Glyn|last14=Miller|first14=Craig|last15=Fierstein|first15=Judy|last16=Hildreth|first16=Wes|last17=Vazquez|first17=Jorge|title=Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile|journal=GSA Today|date=1 December 2014|pages=4–10|doi=10.1130/GSATG216A.1|url=http://geochronology.geoscience.wisc.edu/wp-content/uploads/2015/03/SingeretalGSATodayDec2014.pdf|accessdate=9 July 2016}}

External links

{{Commons category}}
  • [https://web.archive.org/web/20160814170517/http://www.sernageomin.gov.cl/volcan.php?pagina=2&iId=53 Laguna del Maule by Chile's Servicio Nacional de Geología] (in Spanish)
  • Article about Laguna del Maule in the journal Andean Geology
  • Evolution of a large, hot, restless rhyolitic magma system at Laguna del Maule, IAVCEI Assembly 2013

3 : Calderas of Chile|Mountains of Chile|Volcanoes of Maule Region

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 7:18:15