请输入您要查询的百科知识:

 

词条 Lake Minchin
释义

  1. Term

  2. Context

  3. Lake

  4. Lake chronology

  5. Origin

  6. Related events

  7. References

      Sources  

  8. External links

Lake Minchin is a name of an ancient lake in the Altiplano of South America. It existed where today the Salar de Uyuni, Salar de Coipasa and Lake Poopó lie. It was formerly considered the highest lake in the Altiplano but research indicated that the highest shoreline belongs to the later Lake Tauca instead.

The concept of a "Lake Minchin" was first coined in 1906 and the name is based on John B. Minchin. The dating of the lake varies but probably lasted until 22,000 – 21,000 BP. A glacier advance was in progress in the Andes during that timeperiod.

The name "Minchin" has also been used in other contexts, and it has been proposed that the lake was actually a combination of several different paleolakes.

Term

The name "Lake Minchin" has been used inconsistently to refer to either a lake existing 45,000 years ago, the highest lake in the Altiplano or sediment formations, leading to calls to drop the usage of the name "Minchin".{{sfn|Placzek|Quade|Patchett|2006|p=517}} An alternative theory postulates that Lake Minchin was formed by several lakes, including Ouki and Inca Huasi.{{sfn|Placzek|Quade|Patchett|2006|p=528}}[1] Sometimes the term "Minchin" is also applied to the whole hydrological system Titicaca-Rio Desaguadero-Lake Poopo-Salar de Coipasa-Salar de Uyuni,{{sfn|Sánchez-Saldías|Fariña|2014|p=250}} or to the highest ancient lake in the Altiplano (usually known as Lake Tauca).[2] There are also contradictions between lake level records in different parts of the system.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=91}}

Context

During its history a number of lakes appeared and then disappeared on the Altiplano. Lake Minchin was one of the first of these ancient lakes to be described. These lakes were identified by the lake terraces, sediments and bioherms.{{sfn|Fornari|Risacher|Féraud|2001|p=270}} Earlier lakes such as Lake Escara are documented from drill holes in the Salar de Uyuni.{{sfn|Fornari|Risacher|Féraud|2001|p=279}} Later lakes include Lake Tauca and Lake Coipasa.{{sfn|Bobst|Lowenstein|Jordan|Godfrey|2001|p=37}} As early as 1861 there are reports that lake deposits exist on the Altiplano.{{sfn|Moon|1939|p=30}} John B. Minchin in 1882 reported the existence of encrustations around Lake Poopo and the salars south of Coipasa. He postulated a lake with a surface area of {{convert|120000|km2}} left these encrustations and that the nitrate deposits in the Atacama and Tarapaca were likewise formed by water draining for this lake. Some estimates of the size of this lake claimed that it reached from Lake Titicaca as far as 27° south. The name "Lake Minchin" was applied in 1906 by Steinmann, who applied it to the Uyuni basin, while naming the lake covering the Poopo and Coipasa basins "Lake Reck".{{sfn|Moon|1939|p=31}} The name was applied in honour of John B. Minchin.{{sfn|Sánchez-Saldías|Fariña|2014|p=250}} Later it was found that Lake Titicaca was not part of Lake Minchin and the theory was put forward that meltwater from glaciers had formed the lake. A different lake Lake Ballivian was also defined which encompassed Lake Titicaca.{{sfn|Moon|1939|p=32}} The relationship between various deposits in the southern Altiplano and these around Lake Titicaca was unclear at the beginning of the research history.{{sfn|Bowman|1914|p=178}}

Lake

Lake Minchin was a saltwater lake,{{sfn|Servant-Vildary|Mello_e_Sousa|1993|p=70}} which covered the basins of the Salar de Uyuni, Salar de Coipasa, Lake Poopo and Salar de Empexa,{{sfn|Ericksen|Vine|Raul Ballón|1978|p=355}}{{sfn|Fornari|Risacher|Féraud|2001|p=270}} including the towns of Llica, Oruro and the Desaguadero River valley.[3] The lake had an extension of {{convert|200|km}} in east-west direction and of {{convert|400|km}} in north-south direction.{{sfn|Arellano|1984|p=87}} A sill at Ulloma separated Lake Minchin from Lake Titicaca.{{sfn|Wirrmann|Mourguiart|1995|p=348}} Water levels reached an altitude of {{convert|3730|m}} above sea level,{{sfn|Fornari|Risacher|Féraud|2001|p=279}} indicating a depth of {{convert|100|-|140|m}} above the Uyuni basin.{{sfn|Fornari|Risacher|Féraud|2001|p=280}}[4] In the Poopo basin, water levels may have reached {{convert|45|m}}.[5] At Cerro Lipillipi terraces between {{convert|3680|-|3735|m|}} are dated between 25,700 and 31,750 BP.{{sfn|Blodgett|Isacks|Lenters|1997|p=2}} Another estimate is {{convert|3760|-|3720|m}}.{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=57}} Earlier estimates of the altitude are {{convert|3660|-|3705|m}}, resulting in depths of {{convert|40|-|90|m}}. Such water heights exceed these of preceding lakes, and together with even higher water levels of the subsequent Lake Tauca they are part of a trend of increasing water levels in the southern Altiplano which contrasts with progressively decreasing lake levels in the northern Altiplano.{{sfn|Fornari|Risacher|Féraud|2001|p=280}} Earlier research suggested an opposite trend of lowering water levels in both basins.{{sfn|Wirrmann|Mourguiart|1995|p=346}} The surface area of Lake Minchin may have been {{convert|40000|-|60000|km2}},[6] or {{convert|63000|km2}}.[7] A lake terrace at {{convert|3765|m}} is also attributed to Lake Minchin.{{sfn|Wirrmann|Mourguiart|1995|p=349}} The highest lake terraces at {{convert|3772|-|3784|m}} and {{convert|3760|m}} were later found to belong to Lake Tauca, making it the deeper of the two lakes.{{sfn|Blodgett|Isacks|Lenters|1997|p=2}}{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=57}} If Minchin reached a water level of {{convert|3830|m}} it may have spilled into the Pilcomayo River, draining from there via the Rio de la Plata into the Atlantic Ocean.{{sfn|Sánchez-Saldías|Fariña|2014|p=258}} It is also possible that the lake temporarily drained into the Pacific Ocean through its southwesternmost sector at Salar de Ascotán; such an outlet would have existed for only a brief time, however, before it was obstructed by volcanism.{{sfn|Ahlfeld|1972|p=162}} San Agustin, San Cristobal and Colcha formed islands in the lake, which was separated into a Coipasa half and an Uyuni half by a peninsula{{sfn|Arellano|1984|p=87}} of the Serranía Intersalar;{{sfn|Ahlfeld|1972|p=160}} straits at Llica and Salinas de Garci Mendoza connected the two halves.[8] Bays developed close to Isluga, Empexa and Ollagüe.{{sfn|Ahlfeld|1972|p=158}}

Sediments left by the lake indicate the presence of gastropods, ostracods and stromatolites. At Estancia Vinto, several different species have been found, including the ostracods Amphicypris, Candonopsis, Darwinula, Limnocythere, Limnocythere bradburyi, Limnocythere titicaca and the molluscs Anysancylus crequii, Ecpomastrum mirum, Littoridina poopoensis, Taphius montanus. Some species variation may indicate that water levels at the site fluctuated;{{sfn|Wirrmann|Mourguiart|1995|p=349}} for example the deepwater diatoms Cyclotella meneghiniana and Cyclotella stelligera but also benthic species.[9] Around the lake, Polylepis expanded and quantities of water supported Isoetes and Myriophyllum.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=95}} In comparison to Lake Tauca, the climate around Lake Minchin was more favourable to the development of vegetation, probably thanks to higher temperatures and a lower water level.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=97}} On the other hand, the lake may have acted like a barrier and prevented the movement of animals and plants between the south and north of the lake.[10] The repeated expansion and shrinkage of the Altiplano lakes like Minchin influenced the evolution of Orestias fish species.[11]

Salt content has been estimated at {{convert|30|-|130|g/l}}.[7] It was dominated by NaCl, Na-Cl-CO3 and Na-Cl-SO4, as determined from studies on diatoms;{{sfn|Servant-Vildary|Mello_e_Sousa|1993|p=71}} close to the inlet of the Desaguadero River the waters were less salty.{{sfn|Ahlfeld|1972|p=160}} When the lake dried up, it left clay and sand deposits in the Altiplano.[13] Also, the volume of about {{convert|5000|km3}} maximum of water induced the ground beneath the lake to sink by about {{convert|30|m}}.[14]

Lake chronology

The early research in 1978 distinguished a Lake Minchin prior to 32,200 calibrated radiocarbon years and a later Lake Tauca. The exact history of Lake Minchin was little understood at that time,{{sfn|Fornari|Risacher|Féraud|2001|p=270}} with uranium-thorium dating yielding ages of 34,000 – 44,000 and 68,000 – 72,000 years BP.{{sfn|Fornari|Risacher|Féraud|2001|p=271}} These two phases were also called "Upper Minchin" and "Lower Minchin".[15] However, it was later found that radiocarbon dates on these samples indicated much lower ages,{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=57}} from 28,000 years ago to dates too old for radiocarbon dating.{{sfn|Placzek|Quade|Patchett|2006|p=516}} Between 31,000 and 26,000 the lake would have reached its highest level.{{sfn|Blodgett|Isacks|Lenters|1997|p=20}} Around 27,500 BP, the lake reached its second highest level.{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=52}} The drying of the lake did probably occur after about 22,000 BP.{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=57}} Based on sedimentation rates in the Uyuni basin, it is likely that Lake Minchin was not continuous in existence during this timeperiod.{{sfn|Fornari|Risacher|Féraud|2001|p=279}} Other dates extend the time period of Lake Minchin until 21,000 years BP,{{sfn|Wirrmann|Mourguiart|1995|p=348}} or set it earlier at 38,000 years BP.{{sfn|Bobst|Lowenstein|Jordan|Godfrey|2001|p=37}} Yet another proposal postulates that the earliest deep lake occurred 120,000 – 98,000 years ago.{{sfn|Placzek|Quade|Patchett|2006|p=531}} Finally, it has been suggested that Lake Minchin was actually the same wet phase as the Inca Huasi wet phase.[16]

Origin

The formation of Lake Minchin was at first explained with glacial meltwater formed during an interglacial.[17] This idea was disputed because the growth of lakes happens at the same time as the growth of glaciers rather than afterwards.[18] An alternative explanation postulates an increase of precipitation over the Altiplano.[19] Higher insolation may have played a role in the expansion of Lake Minchin.{{sfn|Sánchez-Saldías|Fariña|2014|p=258}} Water from Lake Titicaca may have contributed to the formation of Lake Minchin.[20] An old theory that the Altiplano lakes were formerly part of the ocean is considered to be untenable in light of the lack of marine sediments and the fact that the fish fauna is made up of freshwater species.[21]

Related events

A regional glacial maximum has been associated with the existence of Lake Minchin. The Choqueyapu II glacier advance was probably underway during the Lake Minchin phase and eventually led to the local Last Glacial Maximum,{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=58}} and the Canabaya glacier advance in the Cordillera Real may also be linked to the Minchin phase,[23] as are the formation of glaciers on mountains of the Puna.[16]

Summer insolation was increased during the Lake Minchin period.{{sfn|Bobst|Lowenstein|Jordan|Godfrey|2001|p=37}} During the Lake Minchin period, precipitation on the Altiplano was higher than today.[5] This precipitation increase started 54,800 years ago, while the time period between Lake Minchin and Lake Tauca featured a dry climate.{{sfn|Steffen|Schlunegger|Preusser|2009|p=492}} ENSO variations also occurred during the Minchin period.[26]

Minchin is also the name of a highstand of Lake Titicaca at approximately {{convert|3825|m}} of altitude.{{sfn|Fornari|Risacher|Féraud|2001|p=270}} The highstand phase there ended about 20,000 BP.{{sfn|Servant-Vildary|Mello_e_Sousa|1993|pp=69–70}} During the time of Lake Minchin, water levels in Lake Titicaca rose by about {{convert|15|m}}.{{sfn|Wirrmann|Mourguiart|1995|p=349}}

Water level rises are also recorded from lakes in the southern Lipez region during the time of Lake Minchin and in lesser measure during the time of Lake Tauca, where they may have formed from increased precipitation.{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=52}} The Salar de Atacama likewise was wetter between 53,400 – 15,300 years ago.{{sfn|Bobst|Lowenstein|Jordan|Godfrey|2001|p=37}} Other phenomena associated with the Lake Minchin period are an increased landslide activity in northwest Argentina,[27] the formation of lakes behind such landslides,[26] a saline phase in the Laguna de los Pozuelos lake,[29] an increase in runoff[30] and of sediment deposition along the Pativilca valley[31] and along the Rio Pisco in Peru as well as probable subsequent erosion.{{sfn|Steffen|Schlunegger|Preusser|2009|p=493}}

References

1. ^{{cite journal |last1=Kessler |first1=Albrecht |title=Junge Laufänder ungen des Desaguadero und die Entstehung des Uru-Uru-Sees (bolivianischer Altiplano): Ein Beitrag zur klimabedingten Morphogenese eines Endseebeckens (Recent Changes in the Course of the Desaguadero and the Origin of Lake Uru-Uru (Bolivian Altiplano)) |journal=Erdkunde |date=1966 |volume=20 |issue=3 |pages=194–204 |language=de|jstor=25640513 }}
2. ^{{cite journal |last1=Luna |first1=Lisa V. |last2=Bookhagen |first2=Bodo |last3=Niedermann |first3=Samuel |last4=Rugel |first4=Georg |last5=Scharf |first5=Andreas |last6=Merchel |first6=Silke |title=Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau |journal=Earth and Planetary Science Letters |date=October 2018 |volume=500 |page=249 |doi=10.1016/j.epsl.2018.07.034 |language=en |issn=0012-821X}}
3. ^{{cite journal |last1=Gerth |first1=H. |title=Geologische und morphologische Beobachtungen in den Kordilleren Südperús |journal=Geologische Rundschau |date=August 1915 |volume=6 |issue=3 |page=131 |doi=10.1007/BF01797474|language=de}}
4. ^{{cite journal |last1=Löffler |first1=Heinz |title=The Importance of Mountains for Animal Distribution, Species Speciation, and Faunistic Evolution (With Special Attention to Inland Waters) |journal=Mountain Research and Development |date=1984 |volume=4 |issue=4 |pages=299–304 |doi=10.2307/3673232 |jstor=3673232|subscription=yes}}
5. ^{{cite journal |last1=Brüggen |first1=J. |title=Zur Glazialgeologie der chilenischen Anden |journal=Geologische Rundschau |date=April 1929 |volume=20 |issue=1 |pages=3–4 |doi=10.1007/bf01805072 |language=de |issn=0016-7835}}
6. ^{{cite journal |last1=Litty |first1=Camille |last2=Schlunegger |first2=Fritz |last3=Akçar |first3=Naki |last4=Delunel |first4=Romain |last5=Christl |first5=Marcus |last6=Vockenhuber |first6=Christof |title=Chronology of alluvial terrace sediment accumulation and incision in the Pativilca Valley, western Peruvian Andes |journal=Geomorphology |date=August 2018 |volume=315 |page=55 |doi=10.1016/j.geomorph.2018.05.005 |language=en |issn=0169-555X}}
7. ^{{cite journal|last1=Litty|first1=Camille|last2=Duller|first2=Robert|last3=Schlunegger|first3=Fritz|title=Paleohydraulic reconstruction of a 40 ka-old terrace sequence implies that water discharge was larger than today|journal=Earth Surface Processes and Landforms|date=15 June 2016|volume=41|issue=7|pages=884–898|doi=10.1002/esp.3872|language=en|issn=1096-9837}}
8. ^{{cite journal|last1=McGLUE|first1=MICHAEL M.|last2=PALACIOS-FEST|first2=MANUEL R.|last3=CUSMINSKY|first3=GABRIELA C.|last4=CAMACHO|first4=MARIA|last5=IVORY|first5=SARAH J.|last6=KOWLER|first6=ANDREW L.|last7=CHAKRABORTY|first7=SUVANKAR|title=OSTRACODE BIOFACIES AND SHELL CHEMISTRY REVEAL QUATERNARY AQUATIC TRANSITIONS IN THE POZUELOS BASIN (ARGENTINA)|journal=PALAIOS|date=1 June 2017|volume=32|issue=6|page=423|doi=10.2110/palo.2016.089|url=https://pubs.geoscienceworld.org/gsa/palaios/article/32/6/413/506738|language=en|issn=0883-1351}}
9. ^{{cite journal|last1=Bills|first1=Bruce G.|last2=Adams|first2=Kenneth D.|last3=Wesnousky|first3=Steven G.|title=Viscosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of the late Pleistocene Lake Lahontan high shoreline|journal=Journal of Geophysical Research|date=8 June 2007|volume=112|issue=B6|page=2|doi=10.1029/2005JB003941}}
10. ^{{cite journal|last1=Bookhagen|first1=Bodo|last2=Haselton|first2=Kirk|last3=Trauth|first3=Martin H|title=Hydrological modelling of a Pleistocene landslide-dammed lake in the Santa Maria Basin, NW Argentina|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=May 2001|volume=169|issue=1–2|page=126|doi=10.1016/S0031-0182(01)00221-8}}
11. ^{{Cite book|title=The Aymara|last=Spotorno|first=Angel E.|last2=Veloso|first2=Alberto|date=1990-01-01|publisher=Springer Netherlands|isbn=9789401074636|editor-last=Schull|editor-first=William J.|series=Studies in Human Biology|page=27|language=en|doi=10.1007/978-94-009-2141-2_2|editor-last2=Rothhammer|editor-first2=Francisco}}
12. ^{{cite journal|last1=Thompson|first1=L. G.|title=A 25,000-Year Tropical Climate History from Bolivian Ice Cores|journal=Science|date=4 December 1998|volume=282|issue=5395|page=1862|doi=10.1126/science.282.5395.1858}}
13. ^{{cite web|last1=Lavenu|first1=Alain|title=Geodinamica plio-quaternaria en los Andes Centrales: El Altiplano Norte de Bolivia|url=https://www.researchgate.net/publication/32973601|website=ResearchGate|publisher=Revista Tecnica de YPFB|accessdate=15 October 2016|language=es|date=1995|p=83}}
14. ^{{cite journal|last1=McPhillips|first1=Devin|last2=Bierman|first2=Paul R.|last3=Crocker|first3=Thomas|last4=Rood|first4=Dylan H.|title=Landscape response to Pleistocene-Holocene precipitation change in the Western Cordillera, Peru: Be concentrations in modern sediments and terrace fills|journal=Journal of Geophysical Research: Earth Surface|date=December 2013|volume=118|issue=4|page=2490|doi=10.1002/2013JF002837}}
15. ^{{cite journal|last1=Fritz|first1=Sherilyn C|last2=Baker|first2=Paul A|last3=Lowenstein|first3=Tim K|last4=Seltzer|first4=Geoffrey O|last5=Rigsby|first5=Catherine A|last6=Dwyer|first6=Gary S|last7=Tapia|first7=Pedro M|last8=Arnold|first8=Kimberly K|last9=Ku|first9=Teh-Lung|last10=Luo|first10=Shangde|title=Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America|journal=Quaternary Research|date=January 2004|volume=61|issue=1|page=102|doi=10.1016/j.yqres.2003.08.007|hdl=10161/6625}}
16. ^{{cite journal|last1=Fritz|first1=S.C.|last2=Baker|first2=P.A.|last3=Tapia|first3=P.|last4=Spanbauer|first4=T.|last5=Westover|first5=K.|title=Evolution of the Lake Titicaca basin and its diatom flora over the last ~370,000years|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=February 2012|volume=317–318|page=101|doi=10.1016/j.palaeo.2011.12.013|url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1396&context=geosciencefacpub}}
17. ^{{cite journal|last1=Seltzer|first1=Geoffry O.|title=Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes|journal=Quaternary Science Reviews|date=January 1990|volume=9|issue=2–3|page=150|doi=10.1016/0277-3791(90)90015-3}}
18. ^{{cite journal|last1=Trauth|first1=Martin H.|last2=Bookhagen|first2=Bodo|last3=Marwan|first3=Norbert|last4=Strecker|first4=Manfred R.|title=Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=May 2003|volume=194|issue=1–3|page=118|doi=10.1016/S0031-0182(03)00273-6}}
19. ^{{cite journal|last1=Donselaar|first1=M.E.|last2=Cuevas Gozalo|first2=M.C.|last3=Moyano|first3=S.|title=Avulsion processes at the terminus of low-gradient semi-arid fluvial systems: Lessons from the Río Colorado, Altiplano endorheic basin, Bolivia|journal=Sedimentary Geology|date=January 2013|volume=283|page=2|doi=10.1016/j.sedgeo.2012.10.007}}
20. ^{{cite journal|last1=Bills|first1=Bruce G.|last2=Borsa|first2=Adrian A.|last3=Comstock|first3=Robert L.|title=MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia|journal=Remote Sensing of Environment|date=March 2007|volume=107|issue=1–2|page=243|doi=10.1016/j.rse.2006.11.006}}
21. ^{{cite journal|last1=Fernández|first1=Jorge|last2=Markgraf|first2=Vera|last3=Panarello|first3=Héctor O.|last4=Albero|first4=Miguel|last5=Angiolini|first5=Fernando E.|last6=Valencio|first6=Susana|last7=Arriaga|first7=Mirta|title=Late pleistocene/early holocene environments and climates, fauna, and human occupation in the argentine altiplano|journal=Geoarchaeology|date=July 1991|volume=6|issue=3|pages=268–269|doi=10.1002/gea.3340060303}}
22. ^{{cite journal|last1=Wirrmann|first1=Denis|last2=De Oliveira Almeida|first2=Luiz Fernando|title=Low Holocene level (7700 to 3650 years ago) of lake Titicaca (Bolivia)|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=January 1987|volume=59|page=322|doi=10.1016/0031-0182(87)90088-5}}
23. ^{{cite journal|last1=ZOLÁ|first1=RAMIRO PILLCO|last2=BENGTSSON|first2=LARS|title=Long-term and extreme water level variations of the shallow Lake Poopó, Bolivia|journal=Hydrological Sciences Journal|date=February 2006|volume=51|issue=1|page=99|doi=10.1623/hysj.51.1.98}}
24. ^{{cite journal|last1=ROUCHY|first1=JEAN MARIE|last2=SERVANT|first2=MICHEL|last3=FOURNIER|first3=MARC|last4=CAUSSE|first4=CHRISTIANE|title=Extensive carbonate algal bioherms in upper Pleistocene saline lakes of the central Altiplano of Bolivia|journal=Sedimentology|date=December 1996|volume=43|issue=6|page=975|doi=10.1111/j.1365-3091.1996.tb01514.x|ref=harv}}
25. ^{{cite journal|last1=Vita-Finzi|first1=C.|title=A Pluvial Age in the Puna de Atacama|journal=The Geographical Journal|date=September 1959|volume=125|issue=3/4|pages=401–403|doi=10.2307/1791124|jstor=1791124}}
26. ^{{cite journal|last1=Wirrmann|first1=Denis|last2=Mourguiart|first2=Philippe|last3=Almeida|first3=Oliveira|title=Holocene sedimentology and ostracods distribution in Lake Titicaca : paleohydrological interpretations|journal=Quaternary of South America and Antarctic Peninsula|volume=6|pages=89–127|date=1988|url=http://www.documentation.ird.fr/hor/fdi:31818|accessdate=11 October 2016}}
[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26]
}}

Sources

{{refbegin}}
  • {{cite book |last1=Ahlfeld |first1=Federico |title=Geología de Bolivia |date=1972 |publisher=Editorial Los Amigos del Libro |page=158 |url=https://books.google.com/?id=eIwJAQAAIAAJ |language=es|ref=harv}}
  • {{Cite journal|last=Arellano|first=Jorge|date=1984-01-01|title=Comunicación preliminar sobre asentamientos precerámicos en el sur de Bolivia|url=http://revistas.ucn.cl/index.php/estudios-atacamenos/article/view/179|journal=Estudios Atacameños. Arqueología y Antropología Surandinas|language=es|volume=0|issue=7|pages=85–92|issn=0718-1043|ref=harv}}
  • {{cite journal|last1=Blodgett|first1=Troy A.|last2=Isacks|first2=Bryan L.|last3=Lenters|first3=John D.|title=Constraints on the Origin of Paleolake Expansions in the Central Andes|journal=Earth Interactions|date=January 1997|volume=1|issue=1|pages=1–28|doi=10.1175/1087-3562(1997)001<0001:COTOOP>2.3.CO;2|ref=harv}}
  • {{cite journal|last1=Bobst|first1=Andrew L|last2=Lowenstein|first2=Tim K|last3=Jordan|first3=Teresa E|last4=Godfrey|first4=Linda V|last5=Ku|first5=Teh-Lung|last6=Luo|first6=Shangde|title=A 106ka paleoclimate record from drill core of the Salar de Atacama, northern Chile|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=September 2001|volume=173|issue=1–2|pages=21–42|doi=10.1016/S0031-0182(01)00308-X|ref=harv}}
  • {{cite journal|last1=Bowman|first1=Isaiah|title=Results of an Expedition to the Central Andes|journal=Bulletin of the American Geographical Society|date=1914|volume=46|issue=3|pages=161–183|doi=10.2307/201641|ref=harv|jstor=201641}}
  • {{cite journal|last1=Chepstow-Lusty|first1=Alex|last2=Bush|first2=Mark B.|last3=Frogley|first3=Michael R.|last4=Baker|first4=Paul A.|last5=Fritz|first5=Sherilyn C.|last6=Aronson|first6=James|title=Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago|journal=Quaternary Research|date=January 2005|volume=63|issue=1|pages=90–98|doi=10.1016/j.yqres.2004.09.008|ref=harv}}
  • {{cite journal|last1=Clapperton|first1=C.M.|last2=Clayton|first2=J.D.|last3=Benn|first3=D.I.|last4=Marden|first4=C.J.|last5=Argollo|first5=J.|title=Late Quaternary glacier advances and palaeolake highstands in the Bolivian Altiplano|journal=Quaternary International|date=January 1997|volume=38–39|pages=49–59|doi=10.1016/S1040-6182(96)00020-1|ref=harv}}
  • {{cite journal|last1=Ericksen|first1=George E.|last2=Vine|first2=James D.|last3=Raul Ballón|first3=A.|title=Chemical composition and distribution of lithium-rich brines in salar de Uyuni and nearby salars in southwestern Bolivia|journal=Energy|date=June 1978|volume=3|issue=3|pages=355–363|doi=10.1016/0360-5442(78)90032-4|ref=harv}}
  • {{cite journal|last1=Fornari|first1=Michel|last2=Risacher|first2=François|last3=Féraud|first3=Gilbert|title=Dating of paleolakes in the central Altiplano of Bolivia|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=August 2001|volume=172|issue=3–4|pages=269–282|doi=10.1016/S0031-0182(01)00301-7|ref=harv}}
  • {{cite journal|last1=Moon|first1=H. P.|title=III. THE GEOLOGY AND PHYSIOGRAPHY OF THE ALTIPLANO OF PERU AND BOLIVIA|journal=Transactions of the Linnean Society of London: 3rd Series|date=December 1939|volume=1|issue=1|pages=27–43|doi=10.1111/j.1096-3642.1939.tb00003.x|ref=harv}}
  • {{cite journal|last1=Placzek|first1=C.|last2=Quade|first2=J.|last3=Patchett|first3=P. J.|title=Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change|journal=Geological Society of America Bulletin|date=8 May 2006|volume=118|issue=5–6|pages=515–532|doi=10.1130/B25770.1|ref=harv}}
  • {{cite journal|last1=Sánchez-Saldías|first1=Andrea|last2=Fariña|first2=Richard A.|title=Palaeogeographic reconstruction of Minchin palaeolake system, South America: The influence of astronomical forcing|journal=Geoscience Frontiers|date=March 2014|volume=5|issue=2|pages=249–259|doi=10.1016/j.gsf.2013.06.004|ref=harv}}
  • {{cite journal|last1=Servant-Vildary|first1=S.|last2=Mello e Sousa|first2=S. H.|title=Palaeohydrology of the Quaternary saline Lake Ballivian (southern Bolivian Altiplano) based on diatom studies|journal=International Journal of Salt Lake Research|date=June 1993|volume=2|issue=1|pages=69–85|doi=10.1007/BF02905054|ref=harv}}
  • {{cite journal|last1=Steffen|first1=D.|last2=Schlunegger|first2=F.|last3=Preusser|first3=F.|title=Drainage basin response to climate change in the Pisco valley, Peru|journal=Geology|date=4 June 2009|volume=37|issue=6|pages=491–494|doi=10.1130/G25475A.1|ref=harv}}
  • {{cite journal|last1=Wirrmann|first1=Denis|last2=Mourguiart|first2=Philippe|title=Late Quaternary Spatio-temporal Limnological Variations in the Altiplano of Bolivia and Peru|journal=Quaternary Research|date=May 1995|volume=43|issue=3|pages=344–354|doi=10.1006/qres.1995.1040|ref=harv}}
{{refend}}

External links

  • Hydro‐isostatic deflection and tectonic tilting in the central Andes: Initial results of a GPS survey of Lake Minchin shorelines
  • [https://www.researchgate.net/profile/Pierre_Ribstein/publication/282168113_Aguas_glaciares_y_cambios_climaticos_en_los_Andes_tropicales_conferencias_y_posters/links/56f2b3ae08aecd0261ea9429.pdf#page=157 Aguas, Glaciares y cambios climaticos en los Andes tropicales]
{{Altiplano lakes and paleolakes |state=expanded}}{{Pleistocene Lakes and Seas}}{{coord missing|Bolivia}}{{DEFAULTSORT:Minchin, Lake}}

4 : Geology of Bolivia|Former lakes of South America|Lakes of Bolivia|Pleistocene

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 11:34:24