词条 | Lake Tauca | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
| name = Lake Tauca | native_name = | native_name_lang = | other_name = Lake Pocoyu | image = Titicacameer.jpg | alt = | caption = Satellite image of the Altiplano. The green, brown and white surfaces in the lower right quadrant of the image are Lake Poopó, Salar de Coipasa and Salar de Uyuni, respectively. The blue surface at centre top is Lake Titicaca | pushpin_map = Bolivia | pushpin_map_alt = | pushpin_label_position = | pushpin_map_caption = | image_bathymetry = | alt_bathymetry = | caption_bathymetry = | location = Andes, South America | group = | coordinates = {{coord|20|S|68|W|display=inline,title}}[1] | type = Former lake Pleisto-Holocene glacial lake 72,600–7200 BP | etymology = | part_of = Altiplano | inflow = Glacial meltwater Desaguadero River, Río Grande de Lipez, Lauca River | rivers = | outflow = Potentially Pilcomayo River | oceans = | catchment = | basin_countries = Bolivia, Chile, Peru | agency = | designation = | length = | width = | area = {{convert|48000|-|80000|km2|sqmi|abbr=on}} | depth = {{convert|100|m|ft|abbr=on}} | max-depth = {{convert|142|m|ft|abbr=on}} | volume = {{convert|1200|-|3810|km3|abbr=on}} | residence_time = | salinity = {{convert|20|-|90|g/l|abbr=on}} | shore = | elevation = {{convert|3660|-|3770|m|ft|abbr=on}} | temperature_high = {{convert|10|C|F|abbr=on}} | temperature_low = {{convert|2|C|F|abbr=on}} | frozen = | islands_category = | islands = | sections = | cities = | trenches = | benches = | website = | reference = }} Lake Tauca is a former lake in the Altiplano of Bolivia. It is also known as Lake Pocoyu for its constituent lakes: Lake Poopó, Salar de Coipasa and Salar de Uyuni. The lake covered large parts of the southern Altiplano between the Eastern Cordillera and the Western Cordillera, covering an estimated {{convert|48,000|to|80,000|km2}} of the basins of present-day Lake Poopó and the Salars of Uyuni, Coipasa and adjacent basins. Water levels varied, possibly reaching {{convert|3800|m}} in altitude. The lake was saline. The lake received water from Lake Titicaca, but whether this contributed most of Tauca's water or only a small amount is controversial; the quantity was sufficient to influence the local climate and depress the underlying terrain with its weight. Diatoms, plants and animals developed in the lake, sometimes forming reef knolls. The duration of Lake Tauca's existence is uncertain. Research in 2011 indicated that the rise in lake levels began 18,500 BP, peaking 16,000 and 14,500 years ago. About 14,200 years ago, lake levels dropped before rising again until 11,500 years ago. Some researchers postulate that the last phase of Lake Tauca may have continued until 8,500 BP. The drying of the lake, which may have occurred because of the Bølling-Allerød climate oscillation, left the salt deposits of Salar de Uyuni. Lake Tauca is one of several ancient lakes which formed in the Altiplano. Other known lakes are Lake Escara, Ouki, Salinas, Lake Minchin, Inca Huasi and Sajsi, in addition to several water-level rises of Lake Titicaca. The identity of these lakes is controversial; Sajsi is often considered part of Lake Tauca, and the lake is frequently divided into an earlier (Ticaña) and a later (Coipasa) phase. The formation of Lake Tauca depended on a reduction in air temperature over the Altiplano and an increase in precipitation, which may have been caused by shifts in the Intertropical Convergence Zone (ITCZ) and increased easterly winds. It was originally supposed that glacial melting might have filled Lake Tauca, but the quantity of water would not have been sufficient to fill the whole lake. The lake was accompanied by glacial advance, noticeable at Cerro Azanaques and Tunupa. Elsewhere in South America, water levels and glaciers also expanded during the Lake Tauca phase. Description{{stack|}}OverviewLake Tauca existed on the Altiplano, a high plateau with an average altitude of {{convert|3800|to|4000|m}},[2] covering an area of {{convert|196000|km2}}{{sfn|Blard|Lavé|Sylvestre|Placzek|2013|p=261}} or {{convert|1000|x|200|km}}.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=974}} The highland is in the Andes, the world's longest mountain chain which was formed during the Tertiary with a primary phase of uplift in the Miocene. Its central area, which contains the Altiplano, is formed by the eastern and western chains:[2] the Eastern and Western Cordillera of Bolivia, which reach an altitude of {{convert|6500|m}}.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=974}} The Eastern Cordillera creates a rain shadow over the Altiplano.{{sfn|Zech|May|Kull|Ilgner|2008|p=639}} The climate of the Altiplano is usually dry when westerly winds prevail; during the austral summer, heating induces easterly winds which transport humidity from the Amazon.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=91}} A north-south gradient exists, with mean temperatures and precipitation decreasing from {{convert|15|C}} and {{convert|700|mm}} in the north, to {{convert|7|C}} and {{convert|100|mm}} in the southern Lípez area.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=974}} Although precipitation decreases from north to south, the evaporation rate throughout the Altiplano exceeds {{convert|1500|mm/yr|in/year}}.{{sfn|Argollo|Mourguiart|2000|p=38}} Most precipitation is recorded between October and April.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3974}} Occasionally during winter (but also in summer), frontal disturbances result in snowfall.{{sfn|Servant|Fontes|1978|p=10}} Strong winds and high insolation are other aspects of the Altiplano climate.{{sfn|Ballivian|Risacher|1981|p=17}} Much of the water balance in the present-day Altiplano-Atacama area is maintained by groundwater flow.[4] The terrain of the Altiplano consists primarily of sediments deposited by lakes and rivers during the Miocene and Pleistocene.{{sfn|Clayton|Clapperton|1997|p=169}} A Paleozoic basement underlies Cretaceous and Tertiary sediments.{{sfn|Risacher|Fritz|1991|p=211}} The Andean Central Volcanic Zone and the Altiplano–Puna volcanic complex are in the Cordillera Occidental.{{sfn|Placzek|Quade|Rech|Patchett|2009|p=25}} Lake Tauca was one of many lakes which formed around the world during glacial epochs; others include the Baltic Ice Lake in Europe and Lake Bonneville in North America. Today, the Altiplano contains Lake Titicaca, with a surface area of {{convert|8800|km2}}, and several other lakes and salt pans.[5] The latter include the Salar de Uyuni, at an altitude of {{convert|3653|m}} with an area of {{convert|10000|km2}}, and the Salar de Coipasa, covering {{convert|2500|km2}} at an altitude of {{convert|3656|m}}.{{sfn|Risacher|Fritz|1991|p=212}} Lake Titicaca and the southern salt flats are two separate water basins, connected by the Rio Desaguadero when Titicaca is high enough.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3974}} The theory that the Altiplano was formerly covered by lakes was first proposed by J. Minchin in 1882.{{sfn|Clayton|Clapperton|1997|p=170}} The formation of such lakes usually, but not always, coincided with lower temperatures.{{sfn|Blodgett|Isacks|Lenters|1997|p=20}}{{sfn|Blodgett|Isacks|Lenters|1997|p=21}} No evidence has been found for lake expansions in the Altiplano region below an altitude of {{convert|3500|m}}.{{sfn|Blodgett|Isacks|Lenters|1997|p=23}} GeographyLarger than Lake Titicaca,{{sfn|Broecker|Putnam|2012|p=20}} Tauca was over {{convert|600|km}} long.[6] According to 1978 reconstructions, the lake would have consisted of three basins (Poopó, Coipasa and Uyuni) linked by narrow straits.{{sfn|Risacher|Fritz|1991|p=221}} Around 14,100 BP, Tauca covered the southern Altiplano.[7] Several different estimates for its surface area exist:
Lake Tauca was the largest paleolake in the Altiplano,{{sfn|Blard|Lavé|Sylvestre|Placzek|2013|p=261}} and its predecessors are known as Lake Minchin and Lake Escara.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=975}} Other lake cycles are known as Ouki (120,000–98,000 years ago), Salinas (95,000–80,000 years ago), Inca Huasi (about 46,000 years ago), Sajsi (24,000–20,500 years ago) and Coipasa (13,000–11,000 years ago).{{sfn|Placzek|Quade|Patchett|2006|p=520}} Inca Huasi and Minchin are sometimes considered the same lake phase,{{sfn|McPhillips|Bierman|Crocker|Rood|2013|p=2490}} and other researchers have suggested that Lake Minchin is a combination of several phases.{{sfn|Placzek|Quade|Patchett|2006|p=528}} The Ouki cycle may be subdivided in the future, and a number of sometimes-contradictory names and dates exist for these paleolakes.{{sfn|Placzek|Quade|Patchett|2011|p=233}}
Water depths reached {{convert|100|m}}[5] to {{convert|110|m}}.{{sfn|Blard|Lavé|Sylvestre|Placzek|2013|p=261}} Water levels were about {{convert|140|m}} higher than Salar de Uyuni,[12] or {{convert|135|to|142|m}}.{{sfn|Fornari|Risacher|Féraud|2001|page=280}} According to research published in 2000, the lake level varied from {{convert|3700|to|3760|m}}.{{sfn|Dassargues|2000|p=412}} Some disagreement about water levels at various sites may reflect differing isostatic rebound of the land covered by the lake.{{sfn|Ballivian|Risacher|1981|p=33}}{{sfn|Clayton|Clapperton|1997|p=174}} The original 1978 research on the Tauca phase postulated its shoreline at {{convert|3720|m}}.{{sfn|Servant|Fontes|1978|p=16}} Of the previous lake cycles in the area, only the Ouki cycle appears to have exceeded that altitude.{{sfn|Placzek|Quade|Patchett|2013|p=99}} A later phase in lake levels (known as the Ticaña phase) was lower, at {{convert|3657|m}};{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=286}} the drop from Tauca was abrupt. The late phase of Lake Tauca, Coipasa, had a water level of {{convert|3660|m}},{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=292}} or {{convert|3700|m}}.{{sfn|Placzek|Quade|Patchett|2011|p=242}} Lake Tauca was the largest lake on the Altiplano in the last 130,000,{{sfn|Martin|Blard|Lavé|Condom|2018|p=1}} 120,000[13] or 100,000 years.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}} Although the preceding paleolake (Minchin) was probably shallower,{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}}{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=990}} there is disagreement about the methods used to ascertain water depth.{{sfn|McPhillips|Bierman|Crocker|Rood|2013|p=2492}} Some consider Minchin the larger lake;[14] a 1985 paper estimated its size at {{convert|63000|km2}}, compared with Tauca's {{convert|43000|km2}}.{{sfn|Hastenrath|Kutzbach|1985|p=250}} Confusion may have resulted from the incorrect attribution of Tauca's shorelines to Lake Minchin;{{sfn|Clayton|Clapperton|1997|p=180}} a shoreline at {{convert|3760|m}} formerly attributed to Lake Minchin was dated to the Tauca phase at 13,790 BP.{{sfn|Blodgett|Isacks|Lenters|1997|p=2}} The theory that Tauca is the largest lake follows a deepening trend in the southern Altiplano paleolakes which contrasts with a decreasing trend in the level of Lake Titicaca during the Pleistocene. This pattern probably occurred because the threshold between the two basins progressively eroded, allowing water from Titicaca to flow into the southern Altiplano.{{sfn|Fornari|Risacher|Féraud|2001|page=280}} The lakes left erosional benches, fan deltas (where the lakes interacted with ice) and lake-sediment deposits.{{sfn|Clayton|Clapperton|1997|p=171}} The lake and its predecessors (such as Lake Minchin) formed in the area currently occupied by salt flats such as the Salar de Uyuni, Salar de Coipasa,[2] Lake Poopó,[16] Salar de Empexa, Salar de Laguani,{{sfn|Placzek|Quade|Patchett|2006|p=516}} and Salar de Carcote—several tens of meters beneath the Tauca water level.[17] Salar de Ascotán may[18] or may not have been part of Lake Tauca.[17] The terrain above {{convert|3800|m}} was affected by glaciation.{{sfn|Servant|Fontes|1978|p=10}} In the Coipasa basin, a major debris avalanche from the Tata Sabaya volcano rolled over terraces left by Lake Tauca.[20] HydrologyAt a water level of {{convert|3720|m}}, the total volume of the lake has been estimated to be {{convert|1200|km3}}{{sfn|Risacher|Fritz|2000|p=382}} to {{convert|3810|km3}} at a level of {{convert|3760|m}}.{{sfn|Blodgett|Isacks|Lenters|1997|p=11}} Such volumes could have been reached in centuries.[21] The quantity of water was sufficient to depress the underlying bedrock, which rebounded after the lake disappeared; this has resulted in altitude differences of {{convert|10|to|20|m}}.{{sfn|Clayton|Clapperton|1997|p=174}} Based on oxygen-18 data in lake carbonates, water temperatures ranged from {{convert|2|to|10|C}}{{sfn|Placzek|Quade|Patchett|2011|p=240}} or {{convert|7.5|±|2.5|C}}.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3986}} Tauca may have been subject to geothermal heating.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3975}} The lake was deep and saline.{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=282}} The salt content seems to have consisted of NaCl and Na2SO4.{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=293}} Estimated salt concentrations:
Estimated salt concentrations (based on a lake level of {{convert|3720|m}}, for sodium chloride, lithium and bromine):
Some of this salt penetrated aquifers beneath the lake, which still exist.[22] A significant excess NaCl concentration has been inferred for Lake Tauca, possibly stemming from salt domes whose contents moved from lake to lake.{{sfn|Risacher|Fritz|2000|p=374}} Glacial meltwater may have contributed substantially to Lake Tauca's development.{{sfn|Servant|Fontes|1978|p=20}} {{Strontium}} isotope data indicates that water draining from Lake Titicaca through the Rio Desaguadero may have contributed between 70% and 83% of Lake Tauca's water, an increase of between 8 and 30 times the current outflow of Lake Titicaca via the Desaguadero.{{sfn|Grove|Baker|Cross|Rigsby|2003|p=294}} A drop in the level of Lake Titicaca about 11,500 BP may have resulted in its outflow drying up, favouring the disappearance of Lake Tauca.{{sfn|Cross|Baker|Seltzer|Fritz|2001|p=7}} According to other research, the increased outflow of Lake Titicaca would have had to be unrealistically large to supply Lake Tauca with water if Titicaca was its principal source.{{sfn|Coudrain|Loubet|Condom|Talbi|2002|p=303}} Other estimates assume that one-third of Tauca's water came from Lake Titicaca,{{sfn|Baker|Rigsby|Seltzer|Fritz|2001|p=700}} no more than 15% for any lake cycle,{{sfn|Placzek|Quade|Patchett|2013|p=103}} or the much-lower four percent (similar to today's five-percent contribution from Titicaca to Lake Poopó). During the Coipasa cycle, Lake Poopó may have contributed about 13% of the water.{{sfn|Placzek|Quade|Patchett|2011|p=240}} About 53% of Lake Tauca's water came from the Eastern Cordillera.{{sfn|Placzek|Quade|Patchett|2011|p=239}} About 60,000 years ago, the Desaguadero probably began transporting water from Lake Titicaca to the Uyuni area and the southern paleolakes.[23] Tauca was fed by the Río Grande de Lipez on the south,[24] the Río Lauca on the northwest and the glaciers of the two cordilleras on the east and west.{{sfn|Servant|Fontes|1978|p=16}} The lake's total drainage basin has been estimated at about {{convert|200,000|km2}}.{{sfn|Blard|Lavé|Farley|Fornari|2009|p=3421}} If lake levels reached an altitude of {{Convert|3830|m|ft}},{{sfn|Sánchez-Saldías|Fariña|2014|p=258}} the lake may have drained into the Pilcomayo River and from there through the Río de la Plata into the Atlantic Ocean.{{sfn|Sánchez-Saldías|Fariña|2014|p=257}} Although earlier theories postulated that large lakes formed from glacial meltwater, increased precipitation or decreased evaporation (or both) are today considered necessary for lake formation;{{sfn|Grove|Baker|Cross|Rigsby|2003|p=282}} a complete glacial melting would have had to occur in less than about a century to produce the required volume.{{sfn|Hastenrath|Kutzbach|1985|p=254}} The water volume would be insufficient to explain Lake Tauca's high water levels; however, some smaller lakes in the southern Altiplano probably expanded from glacial meltwater alone.{{sfn|Blodgett|Isacks|Lenters|1997|p=12}} The lake may have contributed to increased precipitation by influencing land breezes.{{sfn|Blodgett|Isacks|Lenters|1997|p=23}} According to strontium isotope data, there may have been little water exchange between Tauca's Uyuni and Coipasa basins.{{sfn|Grove|Baker|Cross|Rigsby|2003|p=290}} During the Coipasa lake cycle, the Coipasa-Uyuni and Poopó basins had a limited connection.{{sfn|Placzek|Quade|Patchett|2011|p=243}} Minor water-level fluctuations occurred during the lake's existence.{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=293}} Based on a {{convert|60000|km2|adj=on}} surface area, the evaporation rate has been estimated at over {{convert|70,000,000,000|m3/yr|ft3/yr}}—comparable to the discharges of the Nile or Rhine.{{sfn|Placzek|Quade|Patchett|2011|p=241}} Less than half of this evaporation returned to the lake as precipitation;{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3987}} in the central sector of the lake{{sfn|Martin|Blard|Lavé|Condom|2018|p=4}} at Tunupa, this would have increased precipitation by 80%.{{sfn|Blard|Lavé|Farley|Fornari|2009|p=3421}} Groundwater from Lake Tauca may have drained into the Quebrada Puripica, northeast of Laguna Miscanti.[25] Given the height of the sill between the two basins and evidence found at Poopó,{{sfn|Placzek|Quade|Patchett|2011|p=241}} water may have drained from the Coipasa-Uyuni basin into Lake Poopó during the Coipasa cycle.{{sfn|Placzek|Quade|Patchett|2011|p=233}} Glacial debris and ice were probably present at the lake,{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}} with fan deltas at Tunupa overlapping the Lake Tauca shore.{{sfn|Blard|Lavé|Farley|Fornari|2009|p=3417}} At Tunupa and Cerro Azanaques, glaciers reached their maximum size shortly before the lake level peaked and probably contributed to water levels when their retreat began.{{sfn|Clayton|Clapperton|1997|p=181}} Two minor glacial advances, over 12,000 BP and about 11,000 BP, appear to coincide with Lake Tauca.{{sfn|Hastenrath|Kutzbach|1985|p=255}} Tufa deposits formed in the lake. The continental environment Pleistocene sediments were formed from lacustrine carbonate deposits. These rocks contain amphibole, clay minerals such as illite, kaolinite and smectite, feldspar, plagioclase, potassium feldspar, pyroxene and quartz. The composition of these rocks resembles that of the Altiplano soils.{{sfn|Placzek|Patchett|Quade|Wagner|2006|p=11}} BiologyLow concentrations of pollen are found in sediments left by Lake Tauca in the Salar de Uyuni.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=93}} Lake Minchin sediments contain more pollen (indicating that it may have had a more favourable climate),{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=95}} but the lack of pollen may be the product of a deeper lake.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=97}} Polylepis may have thrived in favourable salinity and climatic conditions.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}} Increased Polylepis and Acaena pollen is observed towards the end of the Tauca episode.{{sfn|Gosling|Bush|Hanselman|Chepstow-Lusty|2008|p=48}} The lake was deep enough for the development of planktonic diatoms,{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}} including the dominant Cyclotella choctawatcheeana.[12] Other diatoms noted in Lake Tauca are the benthic Denticula subtilis, the epiphytic Achnanthes brevipes, Cocconeis placentula and Rhopalodia gibberula, the planktonic Cyclotella striata and the tychoplanktonic Fragilaria atomus, Fragilaria construens and Fragilaria pinnata.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=59}} Epithemia has also been found.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=987}} Sediments at the shoreline contain fossils of gastropods and ostracods;{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3976}} Littoridina and Succineidae snails have been used to date the lake.{{sfn|Placzek|Quade|Patchett|2006|p=519}} Other genera included Myriophyllum, Isoetes{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}} (indicating the formation of littoral communities){{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=97}} and Pediastrum.{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}} Algae grew in the lake, leading to reef knolls (bioherms) formed by carbonate rocks. These grew in several phases,{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=989}} and some were initially considered stromatolites.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3976}} Some dome-shaped bioherms reach a size of {{convert|4|m}}, forming reef-like structures on terraces. They developed around objects jutting from the surface, such as rocks. Tube- and tuft-shaped structures also appear on these domes.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=978}} Not all such structures formed during the Tauca episode.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=989}} Similar structures have been found in the Ries crater in Germany, where Cladophorites species were responsible for their construction. Taxa identified at Lake Tauca include Chara species.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=987}} The water above the tufa deposits was probably less than {{convert|20|m}} deep.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3976}} In some places (linked to Phormidium encrustatum and Rivularia species), limited stromatolitic development took place.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=987}} DurationThe existence of Lake Tauca was preceded by a dry period, with minor lake events recorded in Salar de Uyuni in the Late Pleistocene at 28,200–30,800 and 31,800–33,400 BP. The earlier Lake Minchin formed at the site of Lake Tauca.{{sfn|Baker|Rigsby|Seltzer|Fritz|2001|p=699}} This period was accompanied by the disappearance of ice from Nevado Sajama.{{sfn|Baker|Rigsby|Seltzer|Fritz|2001|p=700}} A dry period is also noted in Africa and other parts of South America around 18,000 BP, and the retreat of the Amazon rainforest may have produced the lake low-water mark.{{sfn|Servant|Fontes|1978|pp=20–21}} The era may have been drier than the present.{{sfn|Messerli|Grosjean|Vuille|1997|p=231}} The drying of Lake Minchin left a salt layer about {{convert|20|m}} thick in the Salar de Uyuni, where gullies formed.{{sfn|Servant|Fontes|1978|p=15}} Some ooid sediments formed before the Lake Tauca phase.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=983}} Around 28,000 BP, lake levels rose in Lake Huinaymarca (Lake Titicaca's southern basin), preceding Lake Tauca by about two millennia.{{sfn|Gosling|Bush|Hanselman|Chepstow-Lusty|2008|p=46}} During this period, lakes in the Uyuni basin were intermittent.{{sfn|Gosling|Bush|Hanselman|Chepstow-Lusty|2008|p=47}} Previous lakes in the basin were generally small and shallow.{{sfn|Broecker|Putnam|2012|p=20}} The radiometric age of Lake Tauca ranges from 72,600 to 7200 BP.{{sfn|Fornari|Risacher|Féraud|2001|page=272}} The duration of the lake highstands may be overestimated due to radiation scatter.{{sfn|Broecker|Putnam|2012|p=19}} Radiocarbon dates have been obtained on crusts containing calcite, gastropod shells, stromatolites and structures left behind by algae.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=54}} The Lake Tauca shorelines formed over more than century-long periods.{{sfn|Hastenrath|Kutzbach|1985|p=254}} The first research, by Servant and Fontes in 1978, indicated a lake age between 12,500 and 11,000 BP according to C-14 dating.{{sfn|Servant|Fontes|1978|p=19}} These were bracketed by dates between 12,360 ± 120 and 10,640 ± 280 BP for the highest deposits at Salar de Coipasa and Salar de Uyuni, and 10,020 ± 160 and 10,380 ± 180 BP for deposits which formed shortly before the lake dried.{{sfn|Servant|Fontes|1978|p=17}}{{sfn|Ballivian|Risacher|1981|p=33}} The reliability of the dates was questioned in 1990,[27] and a later estimate was set at 13,000 to 10,000 BP.{{sfn|Servant-Vildary|Mello e Sousa|1993|p=70}} In 1990, Rondeau proposed ages of 14,100 to 11,000 BP based on radiocarbon dating and 7,000 to 14,800 BP based on uranium-thorium dating.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=975}} In 1993 it was suggested that Lake Tauca had an earlier phase, with water levels reaching {{convert|3740|m}}, and a later phase reaching {{convert|3720|m}}.{{sfn|Servant-Vildary|Mello e Sousa|1993|p=70}} Research published in 1995 indicated that the lake was shallow for over a millennium before rising to (and stabilizing at) its maximum level. Water levels between 13,900 and 11,500 BP reached {{convert|3720|m}}; {{convert|3740|m}} was reached between 12,475 and 11,540 BP, and {{convert|3760|to|3770|m}} between 12,200 and 11,500 BP.{{sfn|Clayton|Clapperton|1997|p=175}} Research in 1999 indicated an earlier start of the Tauca lake cycle, which was subdivided into three phases and several sub-phases. Around 15,438 ± 80 BP (the Tauca Ia phase), water levels in Salar de Uyuni were {{convert|4|m}} higher than the current salt crust. Lake levels then rose to {{convert|27|m}} above the salt flat, accompanied by freshwater input (Tauca Ib). Around 13,530 ± 50 BP (Tauca II), the lake reached an altitude of {{convert|3693|m}}, {{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=59}} not exceeding {{convert|3700|m}}.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=60}} At this time, strong gully erosion and alluvial fans probably formed in Bolivian valleys.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=63}} Between 13,000 and 12,000 BP, the lake reached its greatest depth—{{convert|110|m}}—of the Tauca III period. Dates of 15,070 BP and 15,330 BP were obtained for the highest shoreline, at {{convert|3760|m}}.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=60}} After 12,000 BP, water levels decreased abruptly by {{convert|100|m}}.{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=294}} An even-earlier start was proposed by 2001 research, based on sediments in the Uyuni basin, which determined that Lake Tauca began developing 26,100 BP.{{sfn|Baker|Rigsby|Seltzer|Fritz|2001|p=699}} A 2001 review indicated that most radiometric dates for Lake Tauca cluster between 16,000 and 12,000 BP, with lake levels peaking around 16,000 BP.{{sfn|Fornari|Risacher|Féraud|2001|page=271}} A drop in oxygen-18 concentration in the Nevado Sajama glaciers has been associated with increased precipitation around 14,300 years ago.[21] A 2005 book estimated the duration of the Lake Tauca phase at between 15,000 and 10,500 BP.[29] Research in 2006 postulated that the Lake Tauca transgression began 17,850 BP and peaked at altitudes of {{convert|3765|to|3790|m}} between 16,400 and 14,100 years ago.{{sfn|Placzek|Quade|Patchett|2006|pp=524–525}} Spillovers into neighbouring basins may have stabilized the lake levels at that point,{{sfn|Placzek|Quade|Patchett|2006|p=527}} and the level subsequently dropped over a 300-year period.{{sfn|Placzek|Quade|Patchett|2006|pp=524–525}} The following Coipasa phase ended around 11,040 +120/-440 BP, but its chronology is uncertain.{{sfn|Placzek|Quade|Patchett|2006|p=527}} A 2011 lake history study set the beginning of the lake-level rise at 18,500 years ago. Levels rose slowly to {{convert|3670|m}} 17,500 years ago, before accelerating to {{convert|3760|m}} by 16,000 years ago. Contradictions between lake depths determined by shorelines and diatom-fossil analysis led to two lake-level-rise chronologies: one reaching {{convert|3700|m}} 17,000 years ago and the other reaching {{convert|3690|m}} between 17,500 and 15,000 years ago. The lake level would have peaked from 16,000 to 14,500 years ago at {{convert|3765|to|3775|m}} altitude. Shortly before 14,200 BP, the lake level would have begun its drop to {{convert|3660|m}} by 13,800 BP.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3984}} The Coipasa phase began before 13,300 BP and reached its peak at {{convert|3700|m}} 12,500 years ago. The Coipasa lake's regression was nearly complete around 11,500 years ago.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3986}} Lake Tauca is sometimes subdivided into three phases (Lake Tauca proper, Ticaña and Coipasa), with the Tauca phase lasting from 19,100 to 15,600 BP.{{sfn|Fornari|Risacher|Féraud|2001|page=270}} The Coipasa phase, originally thought to have lasted from 11,400 and 10,400 BP, was corrected to 9,500 to 8,500 BP. During this phase, lake levels rose to {{convert|3660|m}} altitude.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=62}} According to a 1998 publication, Lake Tauca and the Coipasa phase lasted from 15,000 to 8,500 BP.{{sfn|Kull|Grosjean|1998|p=871}} The Coipasa phase has also been identified in Lake Chungará.[30] The Coipasa phase was much less pronounced than the Tauca phase and shorter in duration.[31] An earlier lake phase, Sajsi (24,000–20,000 years ago), is sometimes considered part of Lake Tauca{{sfn|McPhillips|Bierman|Crocker|Rood|2013|p=2490}} with the Tauca and Coipasa cycles.{{sfn|McPhillips|Bierman|Crocker|Rood|2013|p=2492}} The Sajsi lake phase preceded the Tauca phase by one or two millennia.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3984}} The Ticaña phase was accompanied by a {{convert|100|m|adj=on}} drop in water level.{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=286}} The Tauca and Coipasa phases are sometimes considered separate.{{sfn|Fornari|Risacher|Féraud|2001|page=271}} Lakes Tauca and Minchin have been considered the same lake system and called Lake Pocoyu, after the present-day lakes in the area.{{sfn|Argollo|Mourguiart|2000|p=40}} "Minchin" is also used by some authors as a name for the system.{{sfn|Sánchez-Saldías|Fariña|2014|p=250}} The Chita tuff was deposited in Lake Tauca at {{convert|3725|m}} altitude approximately 15,650 years BP, when the lake may have been regressing.{{sfn|Placzek|Quade|Rech|Patchett|2009|p=32}} Another tuff of uncertain age was deposited above Tauca-age sediments and tufas at the southeastern Salar de Coipasa.{{sfn|Placzek|Quade|Rech|Patchett|2009|p=33}} Data from Tunupa indicate that lake levels stabilized between 17,000 and 16,000 years ago. A {{convert|50|m|adj=on}} lake-level drop occurred by 14,500 BP, with the lake drying between then and 13,800 years ago. Rising temperatures and a drop in precipitation were the likely triggers of lake and glacial retreat at the end of Heinrich event One.{{sfn|Blard|Lavé|Sylvestre|Placzek|2013|p=272}} In contrast, data from the Uyuni-Coipasa basin indicate that water levels peaked 13,000 years ago.{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=293}} The drying of Lake Tauca has been linked to the Bølling–Allerød climate period and increased wildfires on the Altiplano;[32] Lake Titicaca may have dropped beneath its outflow, cutting off the water supply to Lake Tauca.[33] Glacial retreat at the beginning of the Holocene may also have been a contributing factor.{{sfn|Servant|Fontes|1978|p=20}} As the lake receded, decreased evaporation (and cloud cover) would have enabled sunlight to increase the evaporation rate, further contributing to a decline in lake surface area.[34] A pattern of lake cycles becoming longer than the preceding one has been noted.{{sfn|Fornari|Risacher|Féraud|2001|page=280}} Water from the lake may have contributed to increased oxygen-18 at Sajama around 14,300 years ago, possibly triggered by evaporation.{{sfn|Quesada|Sylvestre|Vimeux|Black|2015|p=94}} As the lake level dropped, Lake Poopó would have been disconnected first; the sill separating it from the rest of Lake Tauca is relatively shallow. Coipasa and Uyuni would have remained connected until later.{{sfn|Risacher|Fritz|1991|p=224}} Water levels in Lake Titicaca's Lake Huinaimarca were low by 14,200 BP.{{sfn|Gosling|Bush|Hanselman|Chepstow-Lusty|2008|p=47}} The end of the Tauca phase was followed by dry and cold conditions in the Puna, similar to the Younger Dryas, then by an early-Holocene humid period associated with decreased solar radiation. After 10,000 BP, another drought lasted from 8,500 BP to 3,600 BP,{{sfn|Kull|Grosjean|1998|p=871}} and peaked from 7,200–6,700 BP.[35] The world's largest salt pan was left behind when Lake Tauca dried up,[9] with approximately {{convert|10|m}} of material left at Salar de Uyuni.{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=976}} Lake basins in the Altiplano which had filled during the Tauca phase were separated by lower lake levels.[37] ClimateIt has been estimated that summer precipitation would have increased by {{convert|315|±|45|mm}} and temperature dropped {{convert|3|C-change}} for Lake Tauca to form.[38] According to a 1985 estimate, increased precipitation of {{convert|200|mm/yr|in/year}} would be needed;{{sfn|Hastenrath|Kutzbach|1985|p=253}} the estimate was subsequently revised to {{convert|300|mm/yr|in/year}}.{{sfn|Clayton|Clapperton|1997|p=180}} With a {{convert|5|to|7|C-change}} temperature decrease, a 20–75% increase in precipitation would be required to form the lake.{{sfn|Rigsby|Bradbury|Baker|Rollins|2005|p=672}} Research in 2013 indicated that the climate at the Tunupa volcano (in the centre of Lake Tauca) was about {{convert|6|to|7|C-change}} colder than present, with rainfall estimated at {{convert|320|to|600|mm}}.{{sfn|Blard|Lavé|Farley|Fornari|2009|p=3422}} An even more recent estimate envisages a temperature decrease of {{convert|2.9|±|0.2|C-change}} and a mean precipitation 130% higher than today, about {{convert|900|±|200|mm/year|in/year}};{{sfn|Martin|Blard|Lavé|Condom|2018|p=3}} this precipitation increase was concentrated on the eastern side of the catchment of Lake Tauca while the southernmost watershed was almost as dry as present-day.{{sfn|Martin|Blard|Lavé|Condom|2018|p=4}} In a coupled glacier-lake model, temperatures were conditionally estimated at {{convert|5.7|±|1.1|C-change}} lower than today.{{sfn|Placzek|Quade|Patchett|2013|p=104}} In the southern Altiplano, precipitation exceeded {{convert|500|mm}} during this epoch.[39] In the central Altiplano, precipitation was 1.5 to three times higher than today.[40]The formation of Lake Tauca coincides with Heinrich event 1{{sfn|Martin|Blard|Lavé|Condom|2018|p=1}} and has been explained with a southward shift of the Bolivian high that increased transport of easterly moisture into the Altiplano.{{sfn|Martin|Blard|Lavé|Condom|2018|pp=5-6}} Increased cloud cover probably increased the effective precipitation by reducing evaporation rates.{{sfn|Clayton|Clapperton|1997|p=181}} In contrast, insolation rates do not appear to be linked to lake-level highstands in the Altiplano;{{sfn|Placzek|Quade|Patchett|2006|p=530}} the lake expansion occurred when summer insolation was low.{{sfn|Kull|Grosjean|1998|p=871}} The humidity above the lake has been estimated at 60%, taking into account the oxygen-18 content of carbonates deposited by the lake.{{sfn|Placzek|Quade|Patchett|2011|p=240}} Coinciding with Lake Tauca, between 17,000 and 11,000 BP glaciers expanded in the Andes between 18° and 24° south latitude.[41] At Lake Titicaca, glacial tongues approached the shore.[42] The equilibrium line altitude of glaciers in the dry Andes decreased by {{convert|700|to|1000|m}}.[43] Such glacial advances may have been preceded by the humid episodes which formed Lake Tauca.{{sfn|Hastenrath|Kutzbach|1985|p=255}} Around 13,300 BP, maximum glacier size in southern Bolivia is associated with a highstand of Lake Tauca.[44] Glaciers did not expand everywhere, however, and there is little evidence for glacial expansion at Llano de Chajnantor.[45] Frequent incursions of polar air may have contributed to glacial expansion.{{sfn|Servant|Fontes|1978|p=22}} At Tunupa, a volcano located in the centre of Lake Tauca, maximum glacial extent lasted until the lake reached its highest level. Glacial shrinkage beginning 14,500 years ago probably occurred at the same time as a drop in lake levels, although dating ambiguity leaves room for debate. {{sfn|Blard|Lavé|Sylvestre|Placzek|2013|p=261}} The Cerro Azanaques moraines reached their greatest extent from 16,600 to 13,700 BP.{{sfn|Smith|Lowell|Caffee|2009|p=367}} The existence of Lake Tauca coincides with the Late Glacial Maximum,{{sfn|Vizy|Cook|2007|p=5}} when temperatures in the central Altiplano were about {{convert|6.5|C-change}} lower.[40] Part of the glacial advance may have been nurtured by moisture from Lake Tauca,[47][48] a conclusion supported by oxygen isotope data from the Sajama glaciers.{{sfn|Quesada|Sylvestre|Vimeux|Black|2015|p=103}} The Chacabaya glacial advance may be contemporaneous with Lake Tauca.{{sfn|Seltzer|1990|p=150}} Just like the Lake Tauca highstand may have coincided with the first Heinrich event, the Younger Dryas may be associated with the Coipasa highstand.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3974}} Today, the average temperature at stations at an altitude of {{convert|3770|m}} is {{convert|9|C}}.{{sfn|Blard|Sylvestre|Tripati|Claude|2011|p=3974}} ContextThe formation and disappearance of Lake Tauca was a major hydrological event.{{sfn|Martin|Blard|Lavé|Condom|2018|p=1}} Its formation and the later Coipasa lake phase is associated with the Central Andean Pluvial Event, which occurred from 18,000–14,000 to 13,800–9,700 BP. During this epoch, major environmental changes occurred in the Atacama as precipitation increased between 18° and 25° degrees south. In some areas, oases formed in the desert and human settlement began.[49] During the Coipasa lake cycle, precipitation may have focused on the southern Altiplano and been transported there from the Chaco; the main Tauca cycle may have been accompanied by precipitation from the northeast.{{sfn|Placzek|Quade|Patchett|2011|p=242}} A glacial advance in the Turbio valley (a feeder of the Elqui River) between 17,000 and 12,000 years ago has been attributed to the Central Andean Pluvial Event.[50] Other indicators point to dry conditions/lack of glacier advances in central Chile and the central Puna during the highstand of Lake Tauca,[51][52] and the Central Andean Pluvial Event may not have been synchronous between the southern Altiplano and the southern Atacama.[53] Increased precipitation during the Tauca phase was probably triggered by the southern movement of the ITCZ and the strengthening of the South America monsoon,[54] possibly caused by chilling in the northern hemisphere.[55] Combined with a southern shift of high pressure zones, increased moisture during late glacial times[56] would have flowed from the Amazon.{{sfn|Grove|Baker|Cross|Rigsby|2003|p=292}} This change, which occurred from 17,400–12,400 years or 18,000–11,000 BP, is recorded in Bolivian Chaco and Brazilian cave records.[57] The Tauca phase may have been triggered by the southern shift of tropical atmospheric circulation.[58] Although another theory posits that vegetation changes and lake development would have decreased the albedo of the Altiplano, resulting in warming and moisture advection of moisture towards the Altiplano,{{sfn|Kull|Grosjean|1998|p=872}} but such positive feedback mechanisms were considered questionable in a 1998 study.{{sfn|Kull|Grosjean|1998|p=878}} Persistent La Niña climatic conditions may have contributed to the lake's filling.[13]{{sfn|Placzek|Quade|Patchett|2006|p=531}} Conversely, a global climatic warming and a northward shift of the monsoon occurred around 14,500 years ago.{{sfn|Blard|Lavé|Sylvestre|Placzek|2013|p=272}} The ideal conditions for the development of paleolakes in the Altiplano do not appear to exist during maximum glaciation or warm interglacial periods.{{sfn|Clapperton|Clayton|Benn|Marden|1997|p=58}} Related eventsDuring the Tauca phase, a large lake formed at Lake Titicaca; the pampas around Titicaca were left by that lake and the paleolake Minchin.[60] Lake Titicaca rose by about {{convert|5|m}},[61] reaching a height of {{convert|3815|m}},{{sfn|Fornari|Risacher|Féraud|2001|page=270}} and its water became less saline.{{sfn|Sylvestre|Servant-Vildary|Fournier|Servant|1995|p=282}} Another shoreline, at {{convert|3825|m}} altitude, has been linked to a highstand of Lake Titicaca during the Tauca epoch.{{sfn|Blodgett|Isacks|Lenters|1997|p=3}} The highstand, in 13,180 ± 130 BP, is contemporaneous with the Tauca III phase. Titicaca's water level then dropped during the Ticaña phase and probably rose again during the Coipasa.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=62}} Lake Titicaca probably overflowed on the south between 26,000 and 15,000 BP,[33] adding water to Lake Tauca.{{sfn|Vizy|Cook|2007|p=1}} Titicaca's outflow, the Rio Desaguadero, may have been eight times that of today.{{sfn|Grove|Baker|Cross|Rigsby|2003|p=294}} Lake Titicaca was thought to have had a low water level during the Tauca phase before evidence of deeper water was found.[63] Higher lake levels have been found at the same time in other parts of the Altiplano and areas of the Atacama above {{convert|3500|m}}.[64] This was not the first time Lake Titicaca rose; Pleistocene lake-level rises are known as Mataro, Cabana, Ballivian and Minchin.[65] Lakes also formed (or expanded) in the Atacama at that time;{{sfn|Clayton|Clapperton|1997|p=180}} highstands in Lejía Lake began rising after 11,480 ± 70 BP, and in Salar Aguas Calientes high-water levels lasted until 8,430 ± 75 BP.{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|p=62}} Highstands in Laguna Khota occurred around 12,500 and 11,000 BP.{{sfn|Blodgett|Isacks|Lenters|1997|p=4}} Some Salar de Atacama highstands are associated with Lake Tauca and the Coipasa highstand.[66] Traces of the Tauca humid episode have been found at Salar Pedernales, past 26° south latitude.{{sfn|Messerli|Grosjean|Vuille|1997|p=232}} Lake Tauca's highstand correlates with river terraces in Peru's Pisco River;[67] terraces dated 24,000–16,000 BP in its tributary, the Quebrada Veladera;{{sfn|McPhillips|Bierman|Crocker|Rood|2013|p=2490}} enlarged drainage systems in the Quebrada Veladera;{{sfn|McPhillips|Bierman|Crocker|Rood|2013|p=2497}} a humid period at Lake Junin,[68] and new soil formation in the pampas south of the Quinto River in Argentina.[69] During the Tauca phase, water levels in Laguna Miscanti were higher than today;[70] shorelines formed from an event in Ch'iyar Quta lake;{{sfn|Servant-Vildary|Mello e Sousa|1993|p=71}} saline lakes formed in the Lipez area,{{sfn|Rouchy|Servant|Fournier|Causse|1996|p=975}} and water levels rose in the Guayatayoc-Salinas Grandes basin,[71] in Laguna de Suches in Peru[72] and lakes at Uturuncu and Lazufre.[73] Some Atacama Altiplano lake levels increased by {{convert|30|to|50|m}},{{sfn|Huber|Bugmann|Reasoner|2005|p=96}} and evidence exists at the Quebrada Mani archeological site for a higher water supply 16,400–13,700 years ago.[74] During the Tauca, greater flow occurred in rivers in the Atacama region[75] as well as a higher groundwater recharge;{{efn|The associated Central Andean Pluvial Event coincided with the formation of Lake Tauca[49]}}[77] more precipitation fell in the Rio Salado valley;[78] the excavation of the Lluta River Valley{{efn|The associated Central Andean Pluvial Event coincided with the formation of Lake Tauca[49]}}[80] and the Colca Canyon may have been aided by an increased water supply,{{sfn|Alcalá-Reygosa|Palacios|Zamorano Orozco|2016|p=1167}} and glaciers advanced in the Cordillera de Cochabamba.[54] A moraine formed at Hualca Hualca;{{sfn|Alcalá-Reygosa|Palacios|Zamorano Orozco|2016|p=1166}} the Choqueyapu II glacier in the Eastern Cordillera advanced; moraines formed from glacial advances in Argentina{{sfn|Zech|May|Kull|Ilgner|2008|p=639}} (including the Sierra de Santa Victoria);[82] basal sliding glaciers formed at Sajama;{{sfn|Chepstow-Lusty|Bush|Frogley|Baker|2005|p=96}} glaciers and probably also rock glaciers grew at Sillajhuay;[83] landslide activity in northwestern Argentina decreased;[84] alluvial fans were active in the Cordillera Oriental of Peru;; the climate grew wetter over the southern Amazon;{{sfn|Sylvestre|Servant|Servant-Vildary|Causse|1999|pp=64–65}} flooding in the Río Paraguay-Parana basin[86] and precipitation and forest cover in Pampa del Tamarugal increased;[87] the vegetation limit in the Atacama desert descended towards the coast; groundwater discharge in the Atacama increased;[88] the "Pica glass" formed in the Atacama as a consequence of increased vegetation and the occurrence of wildfires in this vegetation;[89] Prosopis tamarugo grew at higher altitude thanks to a better water supply;{{efn|The associated Central Andean Pluvial Event coincided with the formation of Lake Tauca[49]}}[91] erosion occurred along the Pilcomayo,[92] and an increase in Pacific plankton was probably linked to increased runoff (and an increased nutrient supply) from the Andes.[41] A glacial advance in central Chile around 15,000 years ago, also associated with increased precipitation and the Lake Tauca period, was probably triggered by tropical circulation changes.[94] Environmental consequencesThe Viscachani culture around Lake Titicaca was contemporaneous with Lake Tauca.[61] The earliest human dispersal in the region around Lake Tauca occurred towards the end of the Ticaña phase, with the Coipasa phase coinciding with the definitive establishment of humans in the region.[96] In the Atacama area, the end of the paleolake phase coinciding with Lake Tauca was accompanied by the end of the first phase of human settlement,[97] which had occurred during the Central Andean Pluvial Event; now humans left the desert.[98] Likewise in the Altiplano,[99] the wet period that was contemporaneous to Lake Tauca[49] allowed the settlement of Cerro Kaskio[99] and Cueva Bautista close by.[102] Some fossil water reserves in the dry Andes formed during the Tauca phase,{{sfn|Messerli|Grosjean|Vuille|1997|p=229}} the groundwater in the northern Chilean Central Valley for example dates back to the Lake Tauca wet phase.[103] Lake Tauca may have supplied water to the Rio de la Plata region, sustaining life there during dry periods.{{sfn|Sánchez-Saldías|Fariña|2014|p=258}} The Lake Tauca and preceding cycles left evaporite deposits,[104] with sediment layers left by the lake in the Salar de Uyuni reaching a thickness of {{convert|6|m}}.{{sfn|Fornari|Risacher|Féraud|2001|page=279}} The high aerosol content of the air in the Uyuni region has been attributed to fine sediments left by Lake Tauca.[6] Diatomaceous deposits containing clay or calc were left behind by the lake,{{sfn|Servant|Fontes|1978|p=16}} and ulexite deposits were formed by sediments in its deltas.{{sfn|Ballivian|Risacher|1981|p=1273}} The taxonomic similarity between fish species of the genus Orestias in Lauca National Park and Salar de Carcote has been attributed to these watersheds' being part of Lake Tauca;[18] in general the evolution of these fish was heavily influenced by the various lake cycles including these that preceded the Tauca cycle.[107] The drying of the ancient lakes would have fragmented amphibious habitats, generating separate populations.[108] During the Tauca and subsequent Coipasa cycles the Atacama Altiplano had far more life than today, including now-extinct deer and horses.{{sfn|Huber|Bugmann|Reasoner|2005|p=97}} Altiplanos and paleolakes in Latin America
See also{{Portal|Bolivia|Peru|Prehistory of South America}}
Notes{{notelist}}References1. ^1 {{cite journal|last1=Vining|first1=Benjamin R|last2=Steinman|first2=Byron A|last3=Abbott|first3=Mark B|last4=Woods|first4=Arielle|title=Paleoclimatic and archaeological evidence from Lake Suches for highland Andean refugia during the arid middle-Holocene|journal=The Holocene|volume=29|issue=2|date=28 November 2018|pages=328–344|doi=10.1177/0959683618810405|language=en|issn=0959-6836}} [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94]2. ^1 {{cite journal|last1=Houston|first1=John|last2=Iglesias|first2=Arturo Jensen|last3=Cunich|first3=Gonzalo Arévalo|title=Constitución de derechos de aprovechamiento sobre aguas subterráneas almacenadas|journal=Revista Derecho Administrativo Económico|date=24 October 2017|volume=0|issue=5|page=124|doi=10.7764/redae.5.4|url=http://redae.uc.cl/index.php/redae/article/view/258|issn=0719-5591|language=es}} 3. ^1 {{cite web|last1=Gardeweg|first1=Moyra P.|last2=Delcorto|first2=Luis A.|title=Glaciares de roca en la Alta Cordillera de Iquique – Región de Tarapacá, Chile|url=http://biblioteca.sernageomin.cl/opac/DataFiles/14905_v2_pp_723_726.pdf|website=biblioteca.sernageomin|publisher=14th Chilean Geological Congress|accessdate=22 June 2018|location=La Serena|language=es|page=726|date=October 2015}} 4. ^1 {{Cite journal|last=Santoro|first=Calogero M.|date=2009|title=Propuesta metodológica interdisciplinaria para poblamientos humanos Pleistoceno tardío/Holoceno temprano, precordillera de Arica, Desierto de Atacama Norte|url=https://repositorio.uc.cl/handle/11534/18213|language=es|p=22|format=PDF|publisher=Pontificia Universidad Católica de Chile}} 5. ^1 {{cite journal|last1=Luna|first1=Lisa V.|last2=Bookhagen|first2=Bodo|last3=Niedermann|first3=Samuel|last4=Rugel|first4=Georg|last5=Scharf|first5=Andreas|last6=Merchel|first6=Silke|title=Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau|journal=Earth and Planetary Science Letters|date=October 2018|volume=500|page=249|doi=10.1016/j.epsl.2018.07.034|language=en|issn=0012-821X}} 6. ^1 {{cite journal|last1=Löffler|first1=Heinz|title=The Importance of Mountains for Animal Distribution, Species Speciation, and Faunistic Evolution (With Special Attention to Inland Waters)|journal=Mountain Research and Development|date=1984|volume=4|issue=4|pages=299–304|doi=10.2307/3673232|jstor=3673232|subscription=yes}} 7. ^1 {{cite journal|last1=Capriles|first1=José M.|last2=Albarracin-Jordan|first2=Juan|last3=Lombardo|first3=Umberto|last4=Osorio|first4=Daniela|last5=Maley|first5=Blaine|last6=Goldstein|first6=Steven T.|last7=Herrera|first7=Katherine A.|last8=Glascock|first8=Michael D.|last9=Domic|first9=Alejandra I.|last10=Veit|first10=Heinz|last11=Santoro|first11=Calogero M.|title=High-altitude adaptation and late Pleistocene foraging in the Bolivian Andes|journal=Journal of Archaeological Science: Reports|date=April 2016|volume=6|page=472|doi=10.1016/j.jasrep.2016.03.006|language=en|issn=2352-409X}} 8. ^1 {{cite journal|last1=Marquet|first1=Pablo A.|last2=Santoro|first2=Calogero M.|last3=Latorre|first3=Claudio|last4=Standen|first4=Vivien G.|last5=Abades|first5=Sebastián R.|last6=Rivadeneira|first6=Marcelo M.|last7=Arriaza|first7=Bernardo|last8=Hochberg|first8=Michael E.|title=Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile|journal=Proceedings of the National Academy of Sciences|date=11 September 2012|volume=109|issue=37|pages=14754–14760|doi=10.1073/pnas.1116724109|pmid=22891345|language=en|issn=0027-8424|pmc=3443180 }} 9. ^1 2 {{cite journal|last1=Capriles|first1=J. M.|last2=Tripcevich|first2=N.|last3=Nielsen|first3=A. E.|last4=Glascock|first4=M. D.|last5=Albarracin-Jordan|first5=J.|last6=Santoro|first6=C. M.|title=Late Pleistocene Lithic Procurement and Geochemical Characterization of the Cerro Kaskio Obsidian Source in South-western Bolivia|journal=Archaeometry|volume=60|issue=5|date=22 April 2018|page=5|doi=10.1111/arcm.12363|url=https://escholarship.org/uc/item/02p509wg}} 10. ^1 {{cite journal|last1=Herrera|first1=Christian|last2=Gamboa|first2=Carolina|last3=Custodio|first3=Emilio|last4=Jordan|first4=Teresa|last5=Godfrey|first5=Linda|last6=Jódar|first6=Jorge|last7=Luque|first7=José A.|last8=Vargas|first8=Jimmy|last9=Sáez|first9=Alberto|title=Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile|journal=Science of the Total Environment|date=May 2018|volume=624|pages=114–132|doi=10.1016/j.scitotenv.2017.12.134|pmid=29248702|language=en|issn=0048-9697}} 11. ^1 {{cite journal|last1=Chávez|first1=R.O.|last2=Clevers|first2=J.G.P.W.|last3=Decuyper|first3=M.|last4=de Bruin|first4=S.|last5=Herold|first5=M.|title=50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)?|journal=Journal of Arid Environments|date=January 2016|volume=124|page=301|doi=10.1016/j.jaridenv.2015.09.007|language=en|issn=0140-1963}} 12. ^1 {{cite journal|last1=Madella|first1=Andrea|last2=Delunel|first2=Romain|last3=Oncken|first3=Onno|last4=Szidat|first4=Sönke|last5=Schlunegger|first5=Fritz|title=Transient uplift of a long-term quiescent coast inferred from raised fan delta sediments|journal=Lithosphere|date=27 July 2017|volume=9|issue=5|page=800|doi=10.1130/L659.1|url=https://pubs.geoscienceworld.org/gsa/lithosphere/article/9/5/796/353483/transient-uplift-of-a-long-term-quiescent-coast|language=en|issn=1941-8264}} 13. ^1 {{cite book|last=Rodríguez Tapia|first=Lilia|last2=Morales Novelo|first2=Jorge A.|year=2012|title=Integración de un sistema de cuentas económicas e hídricas en la Cuenca del Valle de México|url=http://www.inegi.org.mx/eventos/2012/Agua/doc/5%20Lilia%20Rodriguez%20y%20Jorge%20Morales_Integracion%20de%20un%20sistema.pdf|publisher=Universidad Autónoma Metropolitana|page=2|accessdate=2017-01-19}} 14. ^1 {{cite book|author=Inter-American Institute of Agricultural Sciences, Board of Directors|year=1972|title=Junta Directiva, undécima reunión anual: resoluciones y documentos|url=https://books.google.com/?id=muNR3SG58rEC&pg=PT47&lpg=PT47&dq=area+altiplano+boliviano+km2#v=onepage&q=area%20altiplano%20boliviano%20km2&f=false|publisher=IICA Biblioteca Venezuela|page=71|accessdate=2017-01-19}} 15. ^1 {{cite web|language=es|url=http://www.e-asfalto.com/redvialbolivia/index.htm|title=Datos Generales de Bolivia|archive-url=https://web.archive.org/web/20161029235347/http://www.e-asfalto.com/redvialbolivia/index.htm|archive-date=2016-10-29 }} 16. ^1 {{cite book|last=Ponce Sanginés|first=Carlos|year=1972|title=Tiwanaku: Espacio, tiempo y cultura|url=|publisher=Academia Nacional de Ciencias de Bolivia|page=90|accessdate=}} 17. ^1 {{cite book|last=Pérez Preciado|first=Alfonso|year=2000|title=La estructura ecológica principal de la Sabana de Bogotá|publisher=Sociedad Geográfica de Colombia|page=6|ref=harv}} 18. ^1 {{cite journal|last=Bradbury|first=John P|year=1971|title=Paleolimnology of Lake Texcoco, Mexico - evidence from diatoms|journal=Limnology and Oceanography|volume=16|issue=2|page=181|doi=10.4319/lo.1971.16.2.0180|ref=harv|citeseerx=10.1.1.598.4873 }} 19. ^1 {{cite journal|last=Aceituno Bocanegra|first=Francisco Javier|last2=Rojas Mora|first2=Sneider|year=2012|title=Del Paleoindio al Formativo: 10.000 años para la historia de la tecnología lítica en Colombia - From the Paleoindian to the Formative Stage: 10,000 years for the history of lithic technology in Colombia|url=http://www.redalyc.org/pdf/557/55723950006.pdf|journal=Boletín de Antropología, Universidad de Antioquia|volume=28|issue=43|page=127|issn=0120-2510|accessdate=2017-01-19}} 20. ^1 {{cite book|last=Acosta Ochoa|first=Guillermo|year=2007|title=Las ocupaciones precerámicas de la Cuenca de México - del poblamiento a las primeras sociedades agrícolas|url=http://pendientedemigracion.ucm.es/info/arqueoweb/pdf/8-2/acosta.pdf|publisher=Universidad Nacional Autónoma de Mexico|page=9|accessdate=2017-01-19}} 21. ^1 {{cite journal|last1=Roperch|first1=Pierrick|last2=Gattacceca|first2=Jérôme|last3=Valenzuela|first3=Millarca|last4=Devouard|first4=Bertrand|last5=Lorand|first5=Jean-Pierre|last6=Arriagada|first6=Cesar|last7=Rochette|first7=Pierre|last8=Latorre|first8=Claudio|last9=Beck|first9=Pierre|title=Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert|journal=Earth and Planetary Science Letters|date=July 2017|volume=469|page=23|doi=10.1016/j.epsl.2017.04.009|language=en|issn=0012-821X}} 22. ^1 {{cite journal|last1=Núñez|first1=Lautaro|last2=Loyola|first2=Rodrigo|last3=Cartajena|first3=Isabel|last4=López|first4=Patricio|last5=Santander|first5=Boris|last6=Maldonado|first6=Antonio|last7=de Souza|first7=Patricio|last8=Carrasco|first8=Carlos|title=Miscanti-1: Human occupation during the arid Mid-Holocene event in the high-altitude lakes of the Atacama Desert, South America|journal=Quaternary Science Reviews|date=February 2018|volume=181|page=109|doi=10.1016/j.quascirev.2017.12.010|language=en|issn=0277-3791}} 23. ^1 {{cite journal|last1=Yacobaccio|first1=Hugo D.|last2=Morales|first2=Marcelo R.|last3=Hoguin|first3=Rodolphe|title=Habitats of ancient hunter-gatherers in the Puna: Resilience and discontinuities during the Holocene|journal=Journal of Anthropological Archaeology|volume=46|date=October 2016|page=2|doi=10.1016/j.jaa.2016.08.004}} 24. ^1 {{cite journal|last1=Baied|first1=Carlos A.|last2=Wheeler|first2=Jane C.|title=Evolution of High Andean Puna Ecosystems: Environment, Climate, and Culture Change over the Last 12,000 Years in the Central Andes|journal=Mountain Research and Development|date=May 1993|volume=13|issue=2|pages=145–156|doi=10.2307/3673632|url=https://www.researchgate.net/publication/271693571|accessdate=27 September 2016|jstor=3673632}} 25. ^1 {{cite journal|last1=Francis|first1=P. W.|last2=Wells|first2=G. L.|title=Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes|journal=Bulletin of Volcanology|date=July 1988|volume=50|issue=4|page=265|doi=10.1007/BF01047488}} 26. ^1 {{cite book|last1=Flenley|first1=Mark B. Bush, John|title=Tropical rainforest responses to climatic change|pages=35–60|date=2011|publisher=Springer|location=Berlin|isbn=978-3-642-05383-2|edition=2|chapter=Andean montane forests and climate change|doi=10.1007/978-3-642-05383-2_2}} 27. ^1 2 {{cite book|last1=Khodri|first1=edited by Françoise Vimeux, Florence Sylvestre, Myriam|title=Past climate variability in South America and surrounding regions from the Last Glacial Maximum to the Holocene|volume=14|date=2009|publisher=Springer|location=[Dordrecht]|isbn=978-90-481-2672-9|page=251|doi=10.1007/978-90-481-2672-9_10|chapter=Similarities and Discrepancies Between Andean Ice Cores Over the Last Deglaciation: Climate Implications|series=Developments in Paleoenvironmental Research}} 28. ^1 {{cite book|last1=Yechieli|first1=Uri Kafri, Yoseph|title=Groundwater base level changes and adjoining hydrological systems|date=2010|publisher=Springer|location=Berlin|isbn=978-3-642-13944-4|page=82|doi=10.1007/978-3-642-13944-4_9|chapter=Current Continental Base-Levels Above Sea Level}} 29. ^1 {{cite journal|last1=Bush|first1=M. B.|last2=Hanselman|first2=J. A.|last3=Gosling|first3=W. D.|title=Nonlinear climate change and Andean feedbacks: an imminent turning point?|journal=Global Change Biology|date=December 2010|volume=16|issue=12|page=3227|doi=10.1111/j.1365-2486.2010.02203.x}} 30. ^1 {{cite journal|last1=Coudrain-Ribstein|first1=Anne|last2=Olive|first2=Philippe|last3=Quintanilla|first3=Jorge|last4=Sondag|first4=Francis|last5=Cahuaya|first5=David|title=Salinity and isotopic dynamics of the groundwater resources on the Bolivian Altiplano|journal=Application of Tracers in Arid Zone Hydrology|date=1995|page=270|url=http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/b_fdi_53-54/010017092.pdf|accessdate=25 September 2016|deadurl=no|archiveurl=https://web.archive.org/web/20061122232410/http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/b_fdi_53-54/010017092.pdf|archivedate=22 November 2006|df= }} 31. ^1 {{cite journal|last1=Becel|first1=David|title=Modélisation numérique de l'érosion et de la sédimentation le long de la rivière Pilcomayo (Bolivie) : Un exemple de l'évolution d'une rivière dans un contexte tectoniquement actif sous l'effet des fluctuations climatiques quaternaires|journal=Géologie Appliquée. Université Joseph-Fourier – Grenoble I|date=2004|page=161|url=https://tel.archives-ouvertes.fr/tel-00009285/|accessdate=25 September 2016|language=fr|deadurl=no|archiveurl=https://web.archive.org/web/20161226060502/https://tel.archives-ouvertes.fr/tel-00009285/|archivedate=26 December 2016|df= }} 32. ^1 {{cite journal|last1=Abbott|first1=M|title=Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia|journal=Quaternary Science Reviews|date=December 2000|volume=19|issue=17–18|page=1816|doi=10.1016/S0277-3791(00)00078-0}} 33. ^1 {{cite journal|last1=Smith|first1=Jacqueline A.|last2=Mark|first2=Bryan G.|last3=Rodbell|first3=Donald T.|title=The timing and magnitude of mountain glaciation in the tropical Andes|journal=Journal of Quaternary Science|date=September 2008|volume=23|issue=6–7|page=630|doi=10.1002/jqs.1224}} 34. ^1 {{cite journal|last1=Bräuning|first1=A.|title=Climate variability of the tropical Andes since the late Pleistocene|journal=Advances in Geosciences|date=13 October 2009|volume=22|page=15|doi=10.5194/adgeo-22-13-2009}} 35. ^1 {{cite journal|last1=Geyh|first1=Mebus A.|last2=Grosjean|first2=Martin|last3=Núñez|first3=Lautaro|last4=Schotterer|first4=Ulrich|title=Radiocarbon Reservoir Effect and the Timing of the Late-Glacial/Early Holocene Humid Phase in the Atacama Desert (Northern Chile)|journal=Quaternary Research|date=September 1999|volume=52|issue=2|page=151|doi=10.1006/qres.1999.2060}} 36. ^1 {{cite journal|last1=Zech|first1=Jana|last2=Zech|first2=Roland|last3=Kubik|first3=Peter W.|last4=Veit|first4=Heinz|title=Glacier and climate reconstruction at Tres Lagunas, NW Argentina, based on 10Be surface exposure dating and lake sediment analyses|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=December 2009|volume=284|issue=3–4|pages=180–190|doi=10.1016/j.palaeo.2009.09.023}} 37. ^1 {{cite book|last1=Sánchez|first1=Andrés Valenzuela|last2=Soto-Azat|first2=Claudio|title=Conservación de Anfibios de Chile|date=March 2012|publisher=Universidad Andres Bello|isbn=978-956-7247-70-7|pages=94–95|url=https://www.researchgate.net/publication/264859112|accessdate=24 September 2016|language=es}} 38. ^1 {{cite journal|last1=Perkins|first1=Jonathan P.|last2=Finnegan|first2=Noah J.|last3=Henderson|first3=Scott T.|last4=Rittenour|first4=Tammy M.|title=Topographic constraints on magma accumulation below the actively uplifting Uturuncu and Lazufre volcanic centers in the Central Andes|journal=Geosphere|date=August 2016|volume=12|issue=4|pages=1078–1096|doi=10.1130/GES01278.1}} 39. ^1 {{cite journal|last1=Zech|first1=Jana|last2=Zech|first2=Roland|last3=May|first3=Jan-Hendrik|last4=Kubik|first4=Peter W.|last5=Veit|first5=Heinz|title=Lateglacial and early Holocene glaciation in the tropical Andes caused by La Niña-like conditions|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=July 2010|volume=293|issue=1–2|page=252|doi=10.1016/j.palaeo.2010.05.026}} 40. ^1 {{cite journal|last1=Ward|first1=Dylan J.|last2=Cesta|first2=Jason M.|last3=Galewsky|first3=Joseph|last4=Sagredo|first4=Esteban|title=Late Pleistocene glaciations of the arid subtropical Andes and new results from the Chajnantor Plateau, northern Chile|journal=Quaternary Science Reviews|date=November 2015|volume=128|page=109|doi=10.1016/j.quascirev.2015.09.022}} 41. ^1 {{cite journal|last1=Lopez Steinmetz|first1=Romina L.|last2=Galli|first2=Claudia I.|title=Cambio hidrológico asociado al Último Maximo Glacial-Altitermal durante la transición Pleistoceno-Holoceno en el borde oriental de Puna Norte.|journal=Andean Geology|date=30 January 2015|volume=42|issue=1|doi=10.5027/andgeoV42n1-a01|url=http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-71062015000100001|accessdate=24 September 2016|deadurl=no|archiveurl=https://web.archive.org/web/20141103081404/http://www.scielo.cl/scielo.php?script=sci_arttext|archivedate= 3 November 2014|df= }} 42. ^1 {{cite journal|last1=Latorre|first1=Claudio|last2=Betancourt|first2=Julio L.|last3=Arroyo|first3=Mary T.K.|title=Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22°S) of Northern Chile|journal=Quaternary Research|date=May 2006|volume=65|issue=3|page=463|doi=10.1016/j.yqres.2006.02.002}} 43. ^1 {{cite journal|last1=Sáez|first1=Alberto|last2=Godfrey|first2=Linda V.|last3=Herrera|first3=Christian|last4=Chong|first4=Guillermo|author-link4=Guillermo Chong|last5=Pueyo|first5=Juan J.|title=Timing of wet episodes in Atacama Desert over the last 15 ka. The Groundwater Discharge Deposits (GWD) from Domeyko Range at 25°S.|journal=Quaternary Science Reviews|date=August 2016|volume=145|page=91|doi=10.1016/j.quascirev.2016.05.036|hdl=2445/99385}} 44. ^1 {{cite web|last1=Gayo|first1=E.M.|last2=Latorre|first2=C.|last3=Jordan|first3=T.E.|title=Fantasmas de bosques y agua fó sil en la Pampa del Tamarugal, norte de Chile|url=http://biblioserver.sernageomin.cl/opac/DataFiles/12993_v1_S4_010.pdf|website=SERNAGEOMIN|publisher=12th Chilean Geological Congress|accessdate=21 September 2016|location=Santiago|page=3|language=es|date=November 2009|deadurl=no|archiveurl=https://web.archive.org/web/20161229171200/http://biblioserver.sernageomin.cl/opac/DataFiles/12993_v1_S4_010.pdf|archivedate=29 December 2016|df= }} 45. ^1 {{cite journal|last1=Kruck|first1=Wolfgang|last2=Helms|first2=Fabian|last3=Geyh|first3=Mebus A.|last4=Suriano|first4=José M.|last5=Marengo|first5=Hugo G.|last6=Pereyra|first6=Fernando|title=Late Pleistocene-Holocene History of Chaco-Pampa Sediments in Argentina and Paraguay|journal=Eiszeitalter und Gegenwart|date=6 June 2011|volume=60|issue=1|page=199|doi=10.3285/eg.60.1.13}} 46. ^1 {{cite journal|last1=Nester|first1=P. L.|last2=Gayo|first2=E.|last3=Latorre|first3=C.|last4=Jordan|first4=T. E.|last5=Blanco|first5=N.|title=Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene|journal=Proceedings of the National Academy of Sciences|date=3 December 2007|volume=104|issue=50|pages=19724–19729|doi=10.1073/pnas.0705373104|pmid=18056645|pmc=2148365}} 47. ^1 {{cite journal|last1=Bobst|first1=Andrew L|last2=Lowenstein|first2=Tim K|last3=Jordan|first3=Teresa E|last4=Godfrey|first4=Linda V|last5=Ku|first5=Teh-Lung|last6=Luo|first6=Shangde|title=A 106ka paleoclimate record from drill core of the Salar de Atacama, northern Chile|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=September 2001|volume=173|issue=1–2|pages=21–42|doi=10.1016/S0031-0182(01)00308-X}} 48. ^1 {{cite book|author1=Institut de recherche pour le développement (França)|author2=Universitat de Barcelona|author3=Instituto Geológico y Minero de España|title=Geodinámica Andina: Resúmenes Ampliados|url=https://books.google.com/books?id=hu1Seu6toDwC&pg=PA61|year=2005|publisher=IRD Editions|isbn=978-2-7099-1575-5|page=61}} 49. ^1 {{cite journal|last1=Seltzer|first1=Geoffry O.|title=Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes|journal=Quaternary Science Reviews|date=January 1990|volume=9|issue=2–3|page=147|doi=10.1016/0277-3791(90)90015-3}} 50. ^1 {{cite journal|last1=Bills|first1=Bruce G.|last2=de Silva|first2=Shanaka L.|last3=Currey|first3=Donald R.|last4=Emenger|first4=Robert S.|last5=Lillquist|first5=Karl D.|last6=Donnellan|first6=Andrea|last7=Worden|first7=Bruce|title=Hydro-isostatic deflection and tectonic tilting in the central Andes: Initial results of a GPS survey of Lake Minchin shorelines|journal=Geophysical Research Letters|date=15 February 1994|volume=21|issue=4|pages=293–296|doi=10.1029/93GL03544|bibcode=1994GeoRL..21..293B|citeseerx=10.1.1.528.1524}} 51. ^1 2 {{cite journal|last1=Fritz|first1=Sherilyn C|last2=Baker|first2=Paul A|last3=Lowenstein|first3=Tim K|last4=Seltzer|first4=Geoffrey O|last5=Rigsby|first5=Catherine A|last6=Dwyer|first6=Gary S|last7=Tapia|first7=Pedro M|last8=Arnold|first8=Kimberly K|last9=Ku|first9=Teh-Lung|last10=Luo|first10=Shangde|title=Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America|journal=Quaternary Research|date=January 2004|volume=61|issue=1|page=102|doi=10.1016/j.yqres.2003.08.007|hdl=10161/6625}} 52. ^1 2 {{cite journal|last1=Baker|first1=P. A.|title=The History of South American Tropical Precipitation for the Past 25,000 Years|journal=Science|volume=291|issue=5504|pages=640–3|year=2001|issn=0036-8075|doi=10.1126/science.291.5504.640|pmid=11158674|url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1006&context=geosciencefacpub}} 53. ^1 {{cite journal|last1=Ammann|first1=Caspar|last2=Jenny|first2=Bettina|last3=Kammer|first3=Klaus|last4=Messerli|first4=Bruno|title=Late Quaternary Glacier response to humidity changes in the arid Andes of Chile (18–29°S)|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=August 2001|volume=172|issue=3–4|page=324|doi=10.1016/S0031-0182(01)00306-6}} 54. ^1 {{cite book|author1=E. Gierlowski-Kordesch|author2=K. Kelts|title=Global Geological Record of Lake Basins|url=https://books.google.com/books?id=QLOvXlH1y9wC&pg=PA405|date=23 November 2006|publisher=Cambridge University Press|isbn=978-0-521-03168-4|page=405}} 55. ^1 {{cite journal|last1=Fritz|first1=S.C.|last2=Baker|first2=P.A.|last3=Tapia|first3=P.|last4=Spanbauer|first4=T.|last5=Westover|first5=K.|title=Evolution of the Lake Titicaca basin and its diatom flora over the last ~370,000 years|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=February 2012|volume=317–318|page=101|doi=10.1016/j.palaeo.2011.12.013|url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1396&context=geosciencefacpub}} 56. ^1 {{cite journal|last1=Risacher|first1=François|last2=Fritz|first2=Bertrand|last3=Alonso|first3=Hugo|title=Non-conservative behavior of bromide in surface waters and brines of Central Andes: A release into the atmosphere?|journal=Geochimica et Cosmochimica Acta|date=May 2006|volume=70|issue=9|page=2144|doi=10.1016/j.gca.2006.01.019|bibcode=2006GeCoA..70.2143R}} 57. ^1 {{cite journal|last1=Grosjean|first1=Martin|last2=Núñez|first2=A. Lautaro|title=Lateglacial, early and middle holocene environments, human occupation, and resource use in the Atacama (Northern Chile)|journal=Geoarchaeology|date=July 1994|volume=9|issue=4|page=274|doi=10.1002/gea.3340090402}} 58. ^1 {{cite journal|last1=Hillyer|first1=Rachel|last2=Valencia|first2=Bryan G.|last3=Bush|first3=Mark B.|last4=Silman|first4=Miles R.|last5=Steinitz-Kannan|first5=Miriam|title=A 24,700-yr paleolimnological history from the Peruvian Andes|journal=Quaternary Research|date=January 2009|volume=71|issue=1|page=78|doi=10.1016/j.yqres.2008.06.006}} 59. ^1 {{cite journal|last1=Trauth|first1=Martin H|last2=Alonso|first2=Ricardo A|last3=Haselton|first3=Kirk R|last4=Hermanns|first4=Reginald L|last5=Strecker|first5=Manfred R|title=Climate change and mass movements in the NW Argentine Andes|journal=Earth and Planetary Science Letters|date=June 2000|volume=179|issue=2|page=252|doi=10.1016/S0012-821X(00)00127-8|bibcode=2000E&PSL.179..243T}} 60. ^1 {{cite journal|last1=Smith|first1=Colby A.|last2=Lowell|first2=Thomas V.|last3=Owen|first3=Lewis A.|last4=Caffee|first4=Marc W.|title=Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes|journal=Quaternary Research|date=January 2011|volume=75|issue=1|page=8|doi=10.1016/j.yqres.2010.07.001}} 61. ^1 {{cite journal|last1=Banks|first1=David|last2=Markland|first2=Howard|last3=Smith|first3=Paul V.|last4=Mendez|first4=Carlos|last5=Rodriguez|first5=Javier|last6=Huerta|first6=Alonso|last7=Sæther|first7=Ola M.|title=Distribution, salinity and pH dependence of elements in surface waters of the catchment areas of the Salars of Coipasa and Uyuni, Bolivian Altiplano|journal=Journal of Geochemical Exploration|date=November 2004|volume=84|issue=3|page=146|doi=10.1016/j.gexplo.2004.07.001}} 62. ^1 2 {{cite book|last1=Dejoux|first1=C.|last2=Iltis|first2=A.|title=Lake Titicaca a Synthesis of Limnological Knowledge|volume=68|date=1992|publisher=Springer Netherlands|location=Dordrecht|isbn=978-94-011-2406-5|page=477|edition=1.|doi=10.1007/978-94-011-2406-5_12|chapter=Ethnology And Socio-Economy|series=Monographiae Biologicae}} 63. ^1 {{cite journal|last1=Grosjean|first1=M.|last2=Messerli|first2=B.|last3=Veit|first3=H.|last4=Geyh|first4=M.A.|last5=Schreier|first5=H.|title=A late-Holocene (,2600 BP) glacial advance in the south- central Andes (298S), northern Chile|journal=The Holocene|date=1 July 1998|volume=8|issue=4|pages=473–479|doi=10.1191/095968398677627864}} 64. ^1 2 {{cite journal|last1=Londoño|first1=Ana Cristina|last2=Forman|first2=Steven L.|last3=Eichler|first3=Timothy|last4=Pierson|first4=James|title=Episodic eolian deposition in the past ca. 50,000 years in the Alto Ilo dune field, southern Peru|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=August 2012|volume=346–347|page=13|doi=10.1016/j.palaeo.2012.05.008}} 65. ^1 {{cite journal|last1=Grosjean|first1=Martin|last2=Núñez|first2=Lautaro|last3=Cartajena|first3=Isabel|last4=Messerli|first4=Bruno|title=Mid-Holocene Climate and Culture Change in the Atacama Desert, Northern Chile|journal=Quaternary Research|date=September 1997|volume=48|issue=2|page=242|doi=10.1006/qres.1997.1917}} 66. ^1 2 {{cite journal|last1=Cohen|first1=T.J.|last2=Nanson|first2=G.C.|last3=Jansen|first3=J.D.|last4=Jones|first4=B.G.|last5=Jacobs|first5=Z.|last6=Larsen|first6=J.R.|last7=May|first7=J.-H.|last8=Treble|first8=P.|last9=Price|first9=D.M.|last10=Smith|first10=A.M.|title=Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: Varying moisture sources and increased continental aridity|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=October 2012|volume=356–357|pages=105–106|doi=10.1016/j.palaeo.2011.06.023}} 67. ^1 {{cite journal|last1=Grosjean|first1=Martin|title=Paleohydrology of the Laguna Lejía (north Chilean Altiplano) and climatic implications for late-glacial times|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=May 1994|volume=109|issue=1|page=95|doi=10.1016/0031-0182(94)90119-8}} 68. ^1 {{cite journal|last1=Kull|first1=C.|last2=Imhof|first2=S.|last3=Grosjean|first3=M.|last4=Zech|first4=R.|last5=Veit|first5=H.|title=Late Pleistocene glaciation in the Central Andes: Temperature versus humidity control — A case study from the eastern Bolivian Andes (17°S) and regional synthesis|journal=Global and Planetary Change|date=January 2008|volume=60|issue=1–2|page=160|doi=10.1016/j.gloplacha.2007.03.011}} 69. ^1 2 {{cite journal|last1=Vila|first1=I.|last2=Morales|first2=P.|last3=Scott|first3=S.|last4=Poulin|first4=E.|last5=Véliz|first5=D.|last6=Harrod|first6=C.|last7=Méndez|first7=M. A.|title=Phylogenetic and phylogeographic analysis of the genus (Teleostei: Cyprinodontidae) in the southern Chilean Altiplano: the relevance of ancient and recent divergence processes in speciation|journal=Journal of Fish Biology|date=March 2013|volume=82|issue=3|pages=927–43|doi=10.1111/jfb.12031|pmid=23464552}} 70. ^1 {{cite journal|last1=Tripaldi|first1=Alfonsina|last2=Forman|first2=Steven L.|title=Eolian depositional phases during the past 50 ka and inferred climate variability for the Pampean Sand Sea, western Pampas, Argentina|journal=Quaternary Science Reviews|date=May 2016|volume=139|page=91|doi=10.1016/j.quascirev.2016.03.007}} 71. ^1 {{cite journal|last1=Ward|first1=K. M.|last2=Porter|first2=R. C.|last3=Zandt|first3=G.|last4=Beck|first4=S. L.|last5=Wagner|first5=L. S.|last6=Minaya|first6=E.|last7=Tavera|first7=H.|title=Ambient noise tomography across the Central Andes|journal=Geophysical Journal International|date=11 May 2013|volume=194|issue=3|page=1561|doi=10.1093/gji/ggt166}} 72. ^1 {{cite journal|last1=Valero-Garcés|first1=Blas|last2=Delgado-Huertas|first2=Antonio|last3=Ratto|first3=Norma|last4=Navas|first4=Ana|last5=Edwards|first5=Larry|journal=Journal of Paleolimnology|title=Paleohydrology of Andean saline lakes from sedimentological and isotopic records, Northwestern Argentina|date=2000|volume=24|issue=3|page=344|doi=10.1023/A:1008146122074|hdl=10261/100304}} 73. ^1 {{cite journal|last1=Perez-Fernandez|first1=Cesar A.|last2=Iriarte|first2=Mercedes|last3=Hinojosa-Delgadillo|first3=Wilber|last4=Veizaga-Salinas|first4=Andrea|last5=Cano|first5=Raul J.|last6=Rivera-Perez|first6=Jessica|last7=Toranzos|first7=Gary A.|title=First insight into microbial diversity and ion concentration in the Uyuni salt flat, Bolivia|journal=Caribbean Journal of Science|date=January 2016|volume=49|issue=1|page=58|doi=10.18475/cjos.v49i1.a6}} 74. ^1 {{cite journal|last1=Williams|first1=Joseph J.|last2=Gosling|first2=William D.|last3=Brooks|first3=Stephen J.|last4=Coe|first4=Angela L.|last5=Xu|first5=Sheng|title=Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000 years|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=December 2011|volume=312|issue=1–2|page=122|doi=10.1016/j.palaeo.2011.10.001}} 75. ^1 2 3 {{cite book|last1=Gornitz|first1=Vivien|title=Encyclopedia of paleoclimatology and ancient environments|date=2009|publisher=Springer|location=Dordrecht, Netherlands|isbn=978-1-4020-4411-3|page=380|edition=Online-Ausg.|doi=10.1007/978-1-4020-4411-3_95|chapter=Glacial Sediments|series=Encyclopedia of Earth Sciences Series}} 76. ^1 2 {{cite book|last1=Goudie|first1=Andrew S.|last2=Middleton|first2=Nicholas J.|title=Desert Dust in the Global System|date=2006|publisher=Springer|location=Berlin, Heidelberg|isbn=978-3-540-32355-6|pages=76–77|doi=10.1007/3-540-32355-4}} 77. ^1 {{cite journal|last1=May|first1=Jan-Hendrik|last2=Zech|first2=Roland|last3=Veit|first3=Heinz|title=Late Quaternary paleosol–sediment-sequences and landscape evolution along the Andean piedmont, Bolivian Chaco|journal=Geomorphology|date=June 2008|volume=98|issue=1–2|page=48|doi=10.1016/j.geomorph.2007.02.025}} 78. ^1 2 {{cite journal|last1=Blanco|first1=Saúl|last2=Álvarez-Blanco|first2=Irene|last3=Cejudo-Figueiras|first3=Cristina|last4=De Godos|first4=Ignacio|last5=Bécares|first5=Eloy|last6=Muñoz|first6=Raúl|last7=Guzman|first7=Héctor O.|last8=Vargas|first8=Virginia A.|last9=Soto|first9=Roberto|title=New diatom taxa from high-altitude Andean saline lakes|journal=Diatom Research|date=23 October 2012|volume=28|issue=1|page=14|doi=10.1080/0269249X.2012.734528}} 79. ^1 2 {{cite journal|last1=Collado|first1=Gonzalo A.|last2=Méndez|first2=Marco A.|title=Microgeographic differentiation among closely related species of (Gastropoda: Planorbidae) from the Andean Altiplano|journal=Zoological Journal of the Linnean Society|date=November 2013|volume=169|issue=3|page=649|doi=10.1111/zoj.12073}} 80. ^1 {{cite journal|last1=Rossi|first1=Matti J.|last2=Kesseli|first2=Risto|last3=Liuha|first3=Petri|last4=Meneses|first4=Jédu Sagàrnaga|last5=Bustamante|first5=Jonny|title=A preliminary archaeological and environmental study of pre-Columbian burial towers at Huachacalla, Bolivian Altiplano|journal=Geoarchaeology|date=October 2002|volume=17|issue=7|page=637|doi=10.1002/gea.10032}} 81. ^1 {{cite journal|last1=Riquelme|first1=Rodrigo|last2=Rojas|first2=Constanza|last3=Aguilar|first3=Germán|last4=Flores|first4=Pablo|title=Late Pleistocene–early Holocene paraglacial and fluvial sediment history in the Turbio valley, semiarid Chilean Andes|journal=Quaternary Research|date=January 2011|volume=75|issue=1|page=173|doi=10.1016/j.yqres.2010.10.001}} 82. ^1 2 {{cite journal|last1=May|first1=Jan-Hendrik|last2=Zech|first2=Jana|last3=Zech|first3=Roland|last4=Preusser|first4=Frank|last5=Argollo|first5=Jaime|last6=Kubik|first6=Peter W.|last7=Veit|first7=Heinz|title=Reconstruction of a complex late Quaternary glacial landscape in the Cordillera de Cochabamba (Bolivia) based on a morphostratigraphic and multiple dating approach|journal=Quaternary Research|date=July 2011|volume=76|issue=1|page=115|doi=10.1016/j.yqres.2011.05.003}} 83. ^1 2 {{cite journal|last1=Mohtadi|first1=M.|last2=Romero|first2=O. E.|last3=Hebbeln|first3=D.|title=Changing marine productivity off northern Chile during the past 19 000 years: a multivariable approach|journal=Journal of Quaternary Science|date=May 2004|volume=19|issue=4|page=355|doi=10.1002/jqs.832}} 84. ^1 {{cite journal|last1=Kohfeld|first1=K.E.|last2=Graham|first2=R.M.|last3=de Boer|first3=A.M.|last4=Sime|first4=L.C.|last5=Wolff|first5=E.W.|last6=Le Quéré|first6=C.|last7=Bopp|first7=L.|title=Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis|journal=Quaternary Science Reviews|date=May 2013|volume=68|page=79|doi=10.1016/j.quascirev.2013.01.017}} 85. ^1 2 3 {{cite journal|last1=De la Riva|first1=Ignacio|last2=García-París|first2=Mario|last3=Parra-Olea|first3=Gabriela|title=Systematics of Bolivian frogs of the genus (Anura, Ceratophryidae) based on mtDNA sequences|journal=Systematics and Biodiversity|date=25 March 2010|volume=8|issue=1|page=58|doi=10.1080/14772000903526454|hdl=10261/51796}} 86. ^1 {{cite journal|last1=Hoguin|first1=Rodolphe|last2=Catá|first2=María Paz|last3=Solá|first3=Patricia|last4=Yacobaccio|first4=Hugo D.|title=The spatial organization in Hornillos 2 rockshelter during the Middle Holocene (Jujuy Puna, Argentina)|journal=Quaternary International|date=April 2012|volume=256|pages=45–53|doi=10.1016/j.quaint.2011.08.026}} 87. ^1 {{cite journal|last1=Kaiser|first1=Jérôme|last2=Schefuß|first2=Enno|last3=Lamy|first3=Frank|last4=Mohtadi|first4=Mahyar|last5=Hebbeln|first5=Dierk|title=Glacial to Holocene changes in sea surface temperature and coastal vegetation in north central Chile: high versus low latitude forcing|journal=Quaternary Science Reviews|date=November 2008|volume=27|issue=21–22|page=2070|doi=10.1016/j.quascirev.2008.08.025}} 88. ^1 {{cite journal|last1=Kull|first1=Christoph|last2=Grosjean|first2=Martin|title=Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate–glacier model|journal=Journal of Glaciology|date=1 December 2000|volume=46|issue=155|pages=622–632|doi=10.3189/172756500781832611}} 89. ^1 {{cite web|last1=Riquelme|first1=R.|last2=Aguilar|first2=G.|last3=Rojas|first3=C.|last4=Lohse|first4=P.|title=Cronología 10 Be y 14 C del último avance glacial en Chile semiárido (29–30° S) y factor es que controlan los cambios climáticos del Pleistoceno tardío-Holoceno.|url=http://biblioserver.sernageomin.cl/opac/DataFiles/12993_v1_S4_020.pdf|website=SERNAGEOMIN|publisher=12th Chilean Geological Congress|accessdate=1 September 2016|location=Santiago|page=3|language=es|date=November 2009|deadurl=no|archiveurl=https://web.archive.org/web/20161226055719/http://biblioserver.sernageomin.cl/opac/DataFiles/12993_v1_S4_020.pdf|archivedate=26 December 2016|df= }} 90. ^1 {{cite book|author=John Wayne Janusek|title=Ancient Tiwanaku|url=https://books.google.com/books?id=9aYNPBodILIC&pg=PR11|date=12 May 2008|publisher=Cambridge University Press|isbn=978-0-521-81635-9|page=48}} 91. ^1 {{cite journal|last1=Santoro|first1=Calogero M.|last3=Standen|first3=Vivien G.|last2=Latorre|first2=Claudio|last4=Salas|first4=Carolina|last7=Gayó|first7=Eugenia M.|last5=Osorio|first5=Daniela|last6=Jackson|first6=Donald|title=OCUPACIÓN HUMANA PLEISTOCÉNICA EN EL DESIERTO DE ATACAMA: PRIMEROS RESULTADOS DE LA APLICACIÓN DE UN MODELO PREDICTIVO DE INVESTIGACIÓN INTERDISCIPLINARIA|journal=Chungara|date=2011|volume=43|issue=1|page=361|language=es|url=http://www.scielo.cl/pdf/chungara/v43nespecial/art03.pdf|accessdate=1 September 2016}} 92. ^1 2 3 4 5 {{cite journal|last1=Santoro|first1=Calogero M.|last2=Osorio|first2=Daniela|last3=Standen|first3=Vivien G.|last4=Ugalde|first4=Paula C.|last5=Herrera|first5=Katherine|last6=Gayó|first6=Eugenia M.|last7=Rothhammer|first7=Francisco|last8=Latorre|first8=Claudio|title=Ocupaciones humanas tempranas y condiciones paleoambientales en el Desierto de Atacama durante la transición Pleistoceno-Holoceno|journal=Boletín de Arqueología PUCP|date=2011|volume=15|pages=5–6|url=https://www.researchgate.net/publication/261010153|accessdate=1 September 2016|language=es|issn=1029-2004}} 93. ^1 {{cite journal|last1=Núñez|first1=Lautaro A.|last2=Grosjean|first2=Martín|last3=Cartajena|first3=Isabel F.|title=Un ecorefugio oportunístico en la puna de Atacama durante eventos áridos del Holoceno Medio|journal=Estudios Atacameños. Arqueología y Antropología Surandinas|date=1999|volume=17|page=134|url=http://revistas.ucn.cl/index.php/estudios-atacamenos/article/view/531/507|accessdate=1 September 2016|language=es|issn=0718-1043|deadurl=no|archiveurl=https://web.archive.org/web/20161202042139/http://revistas.ucn.cl/index.php/estudios-atacamenos/article/view/531/507|archivedate= 2 December 2016|df= }} 94. ^1 {{cite journal|last1=Norton|first1=K. P.|last2=Schlunegger|first2=F.|last3=Litty|first3=C.|title=On the potential for regolith control of fluvial terrace formation in semi-arid escarpments|journal=Earth Surface Dynamics|date=2 February 2016|volume=4|issue=1|page=148|doi=10.5194/esurf-4-147-2016|url=http://boris.unibe.ch/76002/1/Schlunegger_Litty.pdf|accessdate=1 September 2016}} }} Bibliography{{Refbegin}}
{{refend}} External links{{commons category|Lake Tauca}}
8 : Former lakes of South America|Geology of Bolivia|Lakes of Bolivia|Geology of Peru|Lakes of Peru|Pleistocene South America|Late Pleistocene|Holocene |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。