词条 | Lévy–Steinitz theorem |
释义 |
In mathematics, the Lévy–Steinitz theorem identifies the set of values to which rearrangements of an infinite series of vectors in Rn can converge. It was proved by Paul Lévy in his first published paper when he was 19 years old.[1] In 1913 Ernst Steinitz filled in a gap in Lévy's proof and also proved the result by a different method.[2] In an expository article, Peter Rosenthal stated the theorem in the following way.[3] The set of all sums of rearrangments of a given series of vectors in a finite-dimensional real Euclidean space is either the empty set or a translate of a subspace (i.e., a set of the form v + M, where v is a given vector and M is a linear subspace). References1. ^{{citation|first=Paul|last=Lévy|authorlink=Paul Lévy (mathematician)|title=Sur les séries semi-convergentes|journal=Nouvelles Annales de Mathématiques|volume=64|year=1905|pages=506–511|url=http://www.numdam.org/item?id=NAM_1905_4_5__506_1}}. {{DEFAULTSORT:Lévy-Steinitz theorem}}2. ^{{citation|first=Ernst|last=Steinitz|authorlink=Ernst Steinitz|title=Bedingt Konvergente Reihen und Konvexe Systeme|journal=Journal für die reine und angewandte Mathematik|volume=143|year=1913|pages=128–175|url=https://eudml.org/doc/149403}}. 3. ^{{citation|first=Peter|last=Rosenthal|authorlink=Peter Rosenthal|title=The remarkable theorem of Lévy and Steinitz|journal=American Mathematical Monthly|volume=94|issue=4|date=April 1987|pages=342–351|mr=0883287|doi=10.2307/2323094}}. 3 : Mathematical series|Permutations|Summability theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。