请输入您要查询的百科知识:

 

词条 Manolis Kellis
释义

  1. Education and early career

  2. Research and career

      Comparative genomics    Epigenomics    Obesity    Alzheimer's disease    Genotype-Tissue Expression (GTEx)    Teaching    Awards and honors  Media appearances  

  3. References

{{Infobox scientist
| name = Manolis Kellis
| birth_name = Manolis Kamvysellis
{{lang-gr|Μανώλης Καμβυσέλλης}}| image = Prof Manolis Kellis at the 2017 American Society of Human Genetics meeting in Orlando October 19 2017.jpg
| caption = Manolis Kellis at the American Society of Human Genetics (ASHG) meeting in Orlando Florida on October 19, 2017
| birth_date = {{birth date and age|1977|3|13}}
| birth_place = Athens, Greece
| known_for = ENCODE
| field = {{Plainlist|
  • Computational genomics
  • Epigenomics
  • Comparative Genomics[1]}}

| alma_mater = Massachusetts Institute of Technology (PhD)
| thesis_title = Computational Comparative Genomics: Genes, Regulation, Evolution.
| thesis_url = https://hdl.handle.net/1721.1/7999
| thesis_year = 2003
| doctoral_advisor = {{Plainlist|
  • Eric Lander[1]
  • Bonnie Berger

}}
| notable_students =
| awards = {{Plainlist|
  • Presidential Early Career Award for Scientists and Engineers (2010)
  • NSF CAREER Award (2007)
  • Sloan Research Fellowship{{when|date=August 2018}}

}}
| website ={{URL|kellislab.com}}}}Manolis Kellis (born 1977, {{lang-gr|Μανώλης Καμβυσέλλης}}) is a professor of Computer Science at the Massachusetts Institute of Technology (MIT) in the area of Computational Biology and a member of the Broad Institute of MIT and Harvard.[2] He is the head of the Computational Biology Group at MIT[3] and is a Principal Investigator in the Computer Science and Artificial Intelligence Lab (CSAIL) at MIT.[4]

Kellis is known for his contributions to genomics, human genetics, epigenomics, gene regulation, and genome evolution. He co-led the NIH Roadmap Epigenomics Project[5] effort to create a comprehensive map of the human epigenome,[7][6][7] the comparative analysis of 29 mammals to create a comprehensive map of conserved elements in the human genome,[8][9] the ENCODE, GENCODE, and modENCODE projects to characterize the genes, non-coding elements, and circuits of the human genome and model organisms.[10][11][12] A major focus of his work is understanding the effects of genetic variations on human disease,[15] with contributions to obesity,[13][14][15] diabetes,[16] Alzheimer's disease,[17][18][19] schizophrenia,[20] and cancer.[21]

Education and early career

Kellis was born in Greece, moved with his family to France when he was 12, and came to the U.S. in 1993.[22] He obtained his PhD from MIT, where he worked with Eric Lander, founding director of the Broad Institute, and Bonnie Berger, professor at MIT[26] and received the Sprowls award for the best doctorate thesis in Computer Science,[27] and the first Paris Kanellakis graduate fellowship.[23] Prior to computational biology, he worked on artificial intelligence, sketch and image recognition, robotics, and computational geometry, at MIT and at the Xerox Palo Alto Research Center.[24]

Research and career

As of July 2018, Manolis Kellis has authored 187 journal publications[25] that have been cited 68,380 times.[26] He has helped direct several large-scale genomics projects, including the Roadmap Epigenomics project,[27][28] the Encyclopedia of DNA Elements (ENCODE) project,[29] the Genotype Tissue-Expression (GTEx) project.[30]

Comparative genomics

Kellis started comparing the genomes of yeast species as an MIT graduate student. As part of this work, which was published in Nature in 2003,[31] he developed computational methods to pinpoint patterns of similarity and difference between closely related genomes. The goal was to develop methods for understanding genomes with a view to apply them to the human genome.

He turned from yeast to flies and ultimately to mammals, comparing multiple species to explore genes, their control elements, and their deregulation in human disease.[37] Kellis led several comparative genomics projects in human,[32] mammals,[33][8] flies,[34][35] and yeast.[36]

Epigenomics

Kellis co-led the NIH government-funded project to catalogue the human epigenome. He said during an interview with MIT Technology Review[32] “If the genome is the book of life, the epigenome is the complete set of annotations and bookmarks.”[32] His lab now uses this map to further the understanding of fundamental processes and disease in humans.

Obesity

Kellis and colleagues used epigenomic data to investigate the mechanistic basis of the strongest genetic association with obesity.[13] They showed that this mechanism operates in the fat cells of both humans and mice and detailed how changes within the relevant genomic regions cause a shift from dissipating energy as heat (thermogenesis) to storing energy as fat.[15] A full understanding of the phenomenon may lead to treatments for people whose 'slow metabolism' cause them to gain excessive weight.[14]

Alzheimer's disease

Kellis, Li-Huei Tsai, and others at MIT used epigenomic markings in human and mouse brains to study the mechanisms leading to Alzheimer’s disease.[17] They showed that immune cell activation and inflammation, which have long been associated with the condition, are not simply the result of neurodegeneration, as some researchers have argued. Rather, in mice engineered to develop Alzheimer’s-like symptoms, they found that immune cells start to change even before neural changes are observed[18]

Genotype-Tissue Expression (GTEx)

Kellis is a member of the Genotype-Tissue Expression (GTEx) project that seeks to elucidate the basis of disease predisposition. It is an NIH-sponsored project that seeks to characterize genetic variation in human tissues with roles in diabetes, heart disease, and cancer.[30]

To date, his lab has developed specific domain expertise in obesity,[14] diabetes,[16] Alzheimer's disease,[17] schizophrenia,[20] and cancer.[21]

Teaching

In addition to his research, Kellis co-taught for several years MIT's required undergraduate introductory algorithm courses 6.006: Introduction to Algorithms and 6.046: Design and Analysis of Algorithms[37][38] with Profs. Ron Rivest, Erik Demaine, Piotr Indyk, Srinivas Devadas and others.

He is also teaching a computational biology course at MIT, titled "Computational Biology: Genomes, Networks, Evolution."[39] The course (6.047/6.878) is geared towards advanced undergraduate and early graduate students, seeking to learn the algorithmic and machine learning foundations of computational biology, and also be exposed to current frontiers of research in order to become active practitioners of the field.[40] He started 6.881: Computational Personal Genomics: Making sense of complete genomes.[41] This course is aimed at exploring the computational challenges associated with interpreting how sequence differences between individuals lead to phenotypic differences such as gene expression, disease predisposition, or response to treatment.[42]

Awards and honors

Kellis received the US Presidential Early Career Award for Scientists and Engineers (PECASE),[43] the National Science Foundation CAREER award,[44] a Sloan Research Fellowship,[45] the Athens Information Technology (AIT) Niki Award for Science and Engineering,[46] the Ruth and Joel Spira Teaching award,[47] and the George M. Sprowls Award for the best Ph.D. thesis in Computer Science at MIT.[48] He was named as one of Technology Review's Top 35 Innovators Under 35 for his research in comparative genomics[49]

Media appearances

  • [https://www.youtube.com/watch?v=zlVZ0ORtpPM Decoding A Genomic Revolution], TEDx Cambridge, 2013 "MIT Computational Biologist Manolis Kellis gives us a glimpse of the doctor’s office visit of the future, and uses his own genetic mutations to show itus how a revolution in genomics is unlocking treatments that could transform medicine as we know it"[50]
  • [https://www.youtube.com/watch?v=VT7XrH4nJr0 Regulatory Genomics and Epigenomics of Complex Disease], Welcome Trust, 2014 "Manolis Kellis, Massachusetts Institute of Technology, USA, gives one of the keynote lectures at Epigenomics of Common Diseases, (28-31 October 2014), organised by the Wellcome Genome Campus Advanced Courses and Scientific Conferences team at Churchill College, Cambridge[51]
  • [https://www.reddit.com/r/science/comments/4pmivr/science_ama_series_im_manolis_kellis_a_professor/ Manolis Kellis Reddit Ask Me Anything (AMA)], Reddit Science AMA Series: "I’m Manolis Kellis, a professor of computer science at MIT studying the human genome to learn about what causes obesity, Alzheimer’s, cancer and other conditions. AMA about comp-bio and epigenomics, and how they impact human health".

References

1. ^{{cite thesis|degree=PhD|website=mit.edu|url=https://dspace.mit.edu/handle/1721.1/7999|hdl=1721.1/7999|first= Manolis|last=Kamvysselis|year=2003|oclc=53277177|title=Computational comparative genomics : genes, regulation, evolution|publisher=MIT}} {{free access}}
2. ^{{Cite web|url=https://www.csail.mit.edu/person/manolis-kellis|title=Manolis Kellis {{!}} MIT CSAIL|website=www.csail.mit.edu|access-date=2018-07-19}}
3. ^{{Cite web|url=https://kellislab.com/lab-head|title=MIT Computational Biology Group|last=|first=|date=|website=MIT Computational Biology Group Lab Head|archive-url=|archive-date=|dead-url=|access-date=2018-07-19}}
4. ^{{Cite web|url=https://www.csail.mit.edu/person/manolis-kellis|title=People {{!}} MIT CSAIL|last=Kellis|first=Manolis|date=|website=www.csail.mit.edu|archive-url=|archive-date=|dead-url=|access-date=2018-07-19}}
5. ^{{Cite web|url=http://www.roadmapepigenomics.org/|title=Roadmap Epigenomics Project - Home|website=www.roadmapepigenomics.org|access-date=2018-07-24}}
6. ^{{Cite news|url=http://news.mit.edu/2015/human-epigenome-map-0218|title=Researchers generate a reference map of the human epigenome|work=MIT News|access-date=2018-07-18}}
7. ^{{Cite news|url=http://news.mit.edu/2015/human-epigenome-map-0218|title=Researchers generate a reference map of the human epigenome|work=MIT News|access-date=2018-07-19}}
8. ^{{Cite journal|last=Lindblad-Toh|first=Kerstin|last2=Garber|first2=Manuel|last3=Zuk|first3=Or|last4=Lin|first4=Michael F.|last5=Parker|first5=Brian J.|last6=Washietl|first6=Stefan|last7=Kheradpour|first7=Pouya|last8=Ernst|first8=Jason|last9=Kellis|first9=Manolis|date=2011|title=A high-resolution map of human evolutionary constraint using 29 mammals|url=https://www.nature.com/articles/nature10530|journal=Nature|volume=478|issue=7370|pages=476–482|doi=10.1038/nature10530|pmid=21993624|issn=0028-0836|via=|pmc=3207357}}
9. ^{{Cite news|url=http://news.mit.edu/2011/genomic-dark-matter-1013|title=Analysis of 29 mammals reveals genomic ‘dark matter’|work=MIT News|access-date=2018-07-21}}
10. ^{{Cite journal|last=Kellis|first=Manolis|last2=Wold|first2=Barbara|last3=Snyder|first3=Michael P.|last4=Bernstein|first4=Bradley E.|last5=Kundaje|first5=Anshul|last6=Marinov|first6=Georgi K.|last7=Ward|first7=Lucas D.|last8=Birney|first8=Ewan|last9=Crawford|first9=Gregory E.|date=2014-04-29|title=Defining functional DNA elements in the human genome|url=http://www.pnas.org/content/111/17/6131|journal=Proceedings of the National Academy of Sciences|volume=111|issue=17|pages=6131–6138|doi=10.1073/pnas.1318948111|issn=0027-8424|pmid=24753594|pmc=4035993}}
11. ^{{Cite journal|last=Ernst|first=Jason|last2=Kheradpour|first2=Pouya|last3=Mikkelsen|first3=Tarjei S.|last4=Shoresh|first4=Noam|last5=Ward|first5=Lucas D.|last6=Epstein|first6=Charles B.|last7=Zhang|first7=Xiaolan|last8=Wang|first8=Li|last9=Issner|first9=Robbyn|date=2011-03-23|title=Mapping and analysis of chromatin state dynamics in nine human cell types|url=https://www.nature.com/articles/nature09906|journal=Nature|volume=473|issue=7345|pages=43–49|doi=10.1038/nature09906|pmid=21441907|pmc=3088773|issn=0028-0836}}
12. ^{{Cite journal|last=Consortium|first=The modENCODE|last2=Roy|first2=Sushmita|last3=Ernst|first3=Jason|last4=Kharchenko|first4=Peter V.|last5=Kheradpour|first5=Pouya|last6=Negre|first6=Nicolas|last7=Eaton|first7=Matthew L.|last8=Landolin|first8=Jane M.|last9=Bristow|first9=Christopher A.|date=2010-12-24|title=Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE|url=http://science.sciencemag.org/content/330/6012/1787|journal=Science|volume=330|issue=6012|pages=1787–1797|doi=10.1126/science.1198374|issn=0036-8075|pmid=21177974|pmc=3192495}}
13. ^{{Cite news|url=http://www.sciencemag.org/news/2015/08/identifying-gene-switch-turns-fat-cells-bad|title=Identifying the gene switch that turns fat cells bad|date=2015-08-19|work=Science {{!}} AAAS|access-date=2018-07-19}}
14. ^{{Cite web|url=http://time.com/4003974/gene-burns-fat/|title=A Fat-Burning Gene May Help Weight Loss|website=Time|access-date=2018-07-19}}
15. ^{{Cite journal|last=Claussnitzer|first=Melina|last2=Dankel|first2=Simon N.|last3=Kim|first3=Kyoung-Han|last4=Quon|first4=Gerald|last5=Meuleman|first5=Wouter|last6=Haugen|first6=Christine|last7=Glunk|first7=Viktoria|last8=Sousa|first8=Isabel S.|last9=Kellis|first9=Manolis|date=2015-09-03|title=FTO Obesity Variant Circuitry and Adipocyte Browning in Humans|journal=New England Journal of Medicine|volume=373|issue=10|pages=895–907|doi=10.1056/nejmoa1502214|issn=0028-4793|pmc=4959911|pmid=26287746}}
16. ^{{Cite journal|last=Onengut-Gumuscu|first=Suna|last2=Chen|first2=Wei-Min|last3=Burren|first3=Oliver|last4=Cooper|first4=Nick J|last5=Quinlan|first5=Aaron R|last6=Mychaleckyj|first6=Josyf C|last7=Farber|first7=Emily|last8=Bonnie|first8=Jessica K|last9=Kellis|first9=Manolis|date=2015-03-09|title=Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers|url=https://www.nature.com/articles/ng.3245|journal=Nature Genetics|volume=47|issue=4|pages=381–386|doi=10.1038/ng.3245|pmid=25751624|pmc=4380767|issn=1061-4036|via=}}
17. ^{{Cite journal|last=Gjoneska|first=Elizabeta|last2=Pfenning|first2=Andreas R.|last3=Mathys|first3=Hansruedi|last4=Quon|first4=Gerald|last5=Kundaje|first5=Anshul|last6=Tsai|first6=Li-Huei|last7=Kellis|first7=Manolis|date=2015|title=Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease|url=https://www.nature.com/articles/nature14252|journal=Nature|volume=518|issue=7539|pages=365–369|doi=10.1038/nature14252|pmid=25693568|issn=0028-0836|via=}}
18. ^{{Cite news|url=http://news.mit.edu/2015/epigenomics-alzheimers-disease-0218|title=Epigenomics of Alzheimer’s disease progression|work=MIT News|access-date=2018-07-19}}
19. ^{{Cite news|url=https://curealz.org/researchers/manolis-kellis/|title=Manolis Kellis – Cure Alzheimer's Fund|work=Cure Alzheimer's Fund|access-date=2018-07-19}}
20. ^{{Cite journal|last=Manolis|first=Kellis|last2=Mark|first2=Daly|last3=Kevin|first3=Eggan|last4=Alkes|first4=Price|date=|title=NIH Grant, Network-based prediction and validation of causal schizophrenia genes and variants|url=http://grantome.com/grant/NIH/R01-MH109978-02|journal=Grantome|volume=|pages=|via=}}
21. ^{{Cite journal|last=Hornshøj|first=Henrik|last2=Nielsen|first2=Morten Muhlig|last3=Sinnott-Armstrong|first3=Nicholas A.|last4=Świtnicki|first4=Michał P.|last5=Juul|first5=Malene|last6=Madsen|first6=Tobias|last7=Sallari|first7=Richard|last8=Kellis|first8=Manolis|last9=Ørntoft|first9=Torben|date=2018-01-11|title=Pan-cancer screen for mutations in non-coding elements with conservation and cancer specificity reveals correlations with expression and survival|url=http://www.nature.com/articles/s41525-017-0040-5|journal=Npj Genomic Medicine|volume=3|issue=1|pages=1|doi=10.1038/s41525-017-0040-5|issn=2056-7944|pmc=5765157|pmid=29354286}}
22. ^{{Cite news|url=http://news.mit.edu/2012/profile-kellis-0417|title=Getting to the root of genetics|work=MIT News|access-date=2018-07-19}}
23. ^{{Cite web|url=http://www.eecs.mit.edu/academics-admissions/graduate-program/eecs-graduate-student-fellowship-awards-news/kanellakis|title=Kanellakis Fellowships {{!}} MIT EECS|website=www.eecs.mit.edu|access-date=2018-07-19}}
24. ^{{Cite web|url=https://www.genome.gov/pages/about/nachgr/2004nachgragenda/tabekelliscv.pdf|title=Manolis Kellis MIT Center for Genome Research Resume|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}
25. ^{{Cite web|url=https://www.ncbi.nlm.nih.gov/pubmed/?term=Manolis+Kellis|title=Manolis Kellis - PubMed - NCBI|last=pubmeddev|website=www.ncbi.nlm.nih.gov|access-date=2018-07-19}}
26. ^{{Google scholar id}}
27. ^{{Cite news|url=https://www.nih.gov/news-events/news-releases/nih-supported-researchers-map-epigenome-more-100-tissue-cell-types|title=NIH-supported researchers map epigenome of more than 100 tissue and cell types|date=2015-07-03|work=National Institutes of Health (NIH)|access-date=2018-07-19}}
28. ^{{Cite journal|last=Kundaje|first=Anshul|last2=Meuleman|first2=Wouter|last3=Ernst|first3=Jason|last4=Bilenky|first4=Misha|last5=Yen|first5=Angela|last6=Heravi-Moussavi|first6=Alireza|last7=Kheradpour|first7=Pouya|last8=Zhang|first8=Zhizhuo|last9=Kellis|first9=Manolis|date=2015|title=Integrative analysis of 111 reference human epigenomes|url=https://www.nature.com/articles/nature14248|journal=Nature|volume=518|issue=7539|pages=317–330|doi=10.1038/nature14248|pmid=25693563|pmc=4530010|issn=0028-0836|via=}}
29. ^{{Cite journal|last=Kellis|first=Manolis|last2=Wold|first2=Barbara|last3=Snyder|first3=Michael P.|last4=Bernstein|first4=Bradley E.|last5=Kundaje|first5=Anshul|last6=Marinov|first6=Georgi K.|last7=Ward|first7=Lucas D.|last8=Birney|first8=Ewan|authorlink8=Ewan Birney|last9=Crawford|first9=Gregory E.|date=2014-04-29|title=Defining functional DNA elements in the human genome|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=111|issue=17|pages=6131–6138|doi=10.1073/pnas.1318948111|issn=0027-8424|pmc=4035993|pmid=24753594}}
30. ^{{Cite news|url=http://news.mit.edu/2014/kellis-lead-mit-team-new-phase-nih-sponsored-gtex-project-elucidate-basis-disease?from_TBM_site=Lead|title=Kellis to lead MIT team in new phase of GTEx project to elucidate basis of disease predisposition|work=MIT News|access-date=2018-07-19}}
31. ^{{Cite journal|last=Kellis|first=Manolis|last2=Patterson|first2=Nick|last3=Endrizzi|first3=Matthew|last4=Birren|first4=Bruce|last5=Lander|first5=Eric S.|date=2003|title=Sequencing and comparison of yeast species to identify genes and regulatory elements|url=https://www.nature.com/articles/nature01644?foxtrotcallback=true|journal=Nature|volume=423|issue=6937|pages=241–254|doi=10.1038/nature01644|pmid=12748633|issn=0028-0836|via=}}
32. ^{{Cite news|url=https://www.technologyreview.com/s/601544/reinterpreting-the-human-genome/|title=Annotating the book of life|last=Schaffer|first=Amanda|work=MIT Technology Review|access-date=2018-07-19}}
33. ^{{Cite journal|last=Xie|first=Xiaohui|last2=Lu|first2=Jun|last3=Kulbokas|first3=E. J.|last4=Golub|first4=Todd R.|last5=Mootha|first5=Vamsi|last6=Lindblad-Toh|first6=Kerstin|last7=Lander|first7=Eric S.|last8=Kellis|first8=Manolis|date=2005-02-27|title=Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals|url=https://www.nature.com/articles/nature03441|journal=Nature|volume=434|issue=7031|pages=338–345|doi=10.1038/nature03441|pmid=15735639|pmc=2923337|issn=0028-0836}}
34. ^{{Cite journal|last=Lin|first=Michael F.|last2=Carlson|first2=Joseph W.|last3=Crosby|first3=Madeline A.|last4=Matthews|first4=Beverley B.|last5=Yu|first5=Charles|last6=Park|first6=Soo|last7=Wan|first7=Kenneth H.|last8=Schroeder|first8=Andrew J.|last9=Kellis|first9=Manolis|date=2007|title=Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes|pmid=17989253|journal=Genome Research|volume=17|issue=12|pages=1823–1836|doi=10.1101/gr.6679507|issn=1088-9051|pmc=2099591|via=}}
35. ^{{Cite journal|last=Stark|first=Alexander|last2=Lin|first2=Michael F.|last3=Kheradpour|first3=Pouya|last4=Pedersen|first4=Jakob S.|last5=Parts|first5=Leopold|last6=Carlson|first6=Joseph W.|last7=Crosby|first7=Madeline A.|last8=Rasmussen|first8=Matthew D.|last9=Kellis|first9=Manolis|date=2007|title=Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures|url=https://www.nature.com/articles/nature06340|journal=Nature|volume=450|issue=7167|pages=219–232|doi=10.1038/nature06340|pmid=17994088|pmc=2474711|issn=0028-0836|via=}}
36. ^{{Cite journal|last=Kellis|first=Manolis|last2=Birren|first2=Bruce W.|last3=Lander|first3=Eric S.|date=2004-03-07|title=Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae|url=https://www.nature.com/articles/nature02424|journal=Nature|volume=428|issue=6983|pages=617–624|doi=10.1038/nature02424|pmid=15004568|issn=0028-0836}}
37. ^{{Cite web|url=https://courses.csail.mit.edu/6.006/spring11/staff.shtml|title=6.006: Introduction to Algorithms - Massachusetts Institute of Technology|website=courses.csail.mit.edu|access-date=2018-07-19}}
38. ^{{Cite web|url=http://stellar.mit.edu/S/course/6/sp06/6.046/|title=6.046/18.410 Class Home|website=stellar.mit.edu|access-date=2018-07-20}}
39. ^{{Cite web|url=http://stellar.mit.edu/S/course/6/fa17/6.047/|title=6.047/6.878 Class Home|website=stellar.mit.edu|access-date=2018-07-19}}
40. ^{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-047-computational-biology-fall-2015/|title=Computational Biology|last=|first=|date=|website=MIT OpenCourseWare|archive-url=|archive-date=|dead-url=|access-date=2018-07-19}}
41. ^{{Cite web|url=https://www.eecs.mit.edu/academics-admissions/academic-information/subject-updates-spring-2018/6881|title=6.881 Computational Personal Genomics: Making sense of complete genomes {{!}} MIT EECS|website=www.eecs.mit.edu|access-date=2018-07-19}}
42. ^{{Cite web|url=https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-881-computational-personal-genomics-making-sense-of-complete-genomes-spring-2016/|title=Computational Personal Genomics: Making Sense of Complete Genomes|last=|first=|date=|website=MIT OpenCourseWare|archive-url=|archive-date=|dead-url=|access-date=2018-07-19}}
43. ^{{Cite web|url=https://www.eecs.mit.edu/news-events/media/aaronson-kellis-recipients-pecase-2010-award|title=Aaronson, Kellis recipients of PECASE 2010 Award {{!}} MIT EECS|website=www.eecs.mit.edu|access-date=2018-07-19}}
44. ^{{Cite web|url=https://www.nsf.gov/awardsearch/showAward?AWD_ID=0644282|title=NSF Award Search: Award#0644282 - CAREER: Comparative Genomics and Biological Signal Discovery in the Human Genome|website=www.nsf.gov|access-date=2018-07-19}}
45. ^{{Cite web|url=https://sloan.org/past-fellows|title=Sloan Foundation Fellows|last=|first=|date=|website=sloan.org|archive-url=|archive-date=|dead-url=|access-date=2018-07-19}}
46. ^{{Cite web|url=https://www.csail.mit.edu/news/kellis-wins-niki-award|title=Kellis Wins Niki Award {{!}} MIT CSAIL|website=www.csail.mit.edu|access-date=2018-07-19}}
47. ^{{Cite news|url=https://engineering.mit.edu/faculty-research/faculty-awards/teaching-awards/|title=MIT School of Engineering {{!}} » Teaching Awards|work=Mit Engineering|access-date=2018-07-19}}
48. ^{{Cite web|url=http://akron.csail.mit.edu/csailawards/year/desc/all|title=All Awards {{!}} MIT CSAIL|last=|first=|date=|website=csail.mit.edu|archive-url=|archive-date=|dead-url=|access-date=2018-07-19}}
49. ^{{Cite web|url=http://www2.technologyreview.com/tr35/profile.aspx?TRID=467|title=Innovator Under 35: Manolis Kellis, 29|last=MIT Technology Review|date=|website=MIT Technology Review|archive-url=|archive-date=|dead-url=|access-date=2018-07-19}}
50. ^{{Cite news|url=http://www.tedxcambridge.com/talk/decoding-a-genomic-revolution/|title=Decoding A Genomic Revolution {{!}} TEDxCambridge|work=TEDxCambridge|access-date=2018-07-19}}
51. ^{{Citation|last=Wellcome Genome Campus Courses and Conferences|title=Regulatory Genomics and Epigenomics of Complex Disease - Manolis Kellis|date=2016-02-25|url=https://www.youtube.com/watch?v=VT7XrH4nJr0|access-date=2018-07-19}}
{{authority control}}{{DEFAULTSORT:Kellis, Manolis}}

12 : Greek expatriates in France|Genetic epidemiologists|Living people|1977 births|People from Athens|Greek emigrants to the United States|Greek computer scientists|Human Genome Project scientists|Massachusetts Institute of Technology faculty|Massachusetts Institute of Technology alumni|Biotechnologists|21st-century American biologists

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/27 9:26:32