请输入您要查询的百科知识:

 

词条 MIT Guyot
释义

  1. Name and research history

  2. Geography and geology

      Local setting    Regional setting    Composition  

  3. Geologic history

      First volcanism    Carbonate platform and late volcanism    Drowning and later evolution    Notes  

  4. References

     Sources 
{{short description|A guyot in the Western Pacific northwest of Marcus Island and about halfway between Japan and the Marshall Islands}}{{coord|27|17.17|N|151|49.39|E|type:mountain_region:XP|display=title|notes={{sfn|Jansa|Arnaud Vanneau|1995|p=312}}}}{{Location map|Oceania
|caption = Location in the Marshall Islands
|label = MIT
|mark = Red triangle with thick white border.svg
|coordinates= {{coord|27|15|N|151|50|E}}
}}

MIT Guyot is a guyot in the Pacific Ocean that rises to a depth of {{convert|1323|m}}. It has a {{convert|20|km|mi|adj=mid|-long}} summit platform and formed during the Cretaceous in the region of present-day French Polynesia through volcanic eruptions.

The volcano was eventually covered by a carbonate platform resembling that of a present-day atoll which was colonized by a number of animals. A major volcanic episode disrupted this platform, which subsequently redeveloped until it drowned in the late Albian.

Name and research history

MIT means Massachusetts Institute of Technology.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} Drilling in MIT Guyot recovered about {{convert|185|m}} of basaltic rocks[1] as part of the Ocean Drilling Program which targeted MIT along with four other guyots of the Pacific Ocean.{{sfn|Erba|Premoli Silva|Watkins|1995|p=157}}

Geography and geology

Local setting

The seamount lies in the Western Pacific Ocean[1] northwest of Marcus Island{{sfn|Senowbari-Daryan|Grötsch|1992|p=86}} and about halfway between Japan and the Marshall Islands.{{sfn|Haggerty|Premoli Silva|1995|p=935}} The Marcus-Wake Seamounts lie nearby,[1] but MIT Guyot is a more isolated volcanic edifice{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} that is sometimes considered to be a member of the Japanese Seamounts.{{sfn|Senowbari-Daryan|Grötsch|1992|p=85}} The crust beneath the seamount is 160 million years old{{sfn|McNutt|Winterer|Sager|Natland|1990|p=1102}} and the Kashima Fracture Zone passes southwest from MIT Guyot.{{sfn|Koppers|Staudigel|Christie|Dieu|1995|p=537}}

MIT Guyot rises from a depth of {{convert|6100|m}} to {{convert|1390|m}} below sea level,{{sfn|McNutt|Winterer|Sager|Natland|1990|p=1102}} although drill cores have been taken from depths of {{convert|1323|m}}.{{sfn|Erba|Premoli Silva|Watkins|1995|p=158}} The seamount is over {{convert|20|km}} long and {{convert|2|-|6|km}} wide, widening southwestwards.{{sfn|Jansa|Arnaud Vanneau|1995|p=312}} It has a flat top{{sfn|Senowbari-Daryan|Grötsch|1992|p=85}} at a depth of {{convert|1400|m}}{{sfn|Jansa|Arnaud Vanneau|1995|p=313}} and has been described as a sunken atoll,{{sfn|Senowbari-Daryan|Grötsch|1992|p=85}} with a relief of about {{convert|100|m}}.{{sfn|McNutt|Winterer|Sager|Natland|1990|p=1102}} Karst features occur on the seamount and are up to {{convert|200|m}} deep,{{sfn|Senowbari-Daryan|Grötsch|1992|p=85}} including dolines and sinkholes.{{sfn|McNutt|Winterer|Sager|Natland|1990|p=1101}} The outer slopes of MIT Guyot are steep, a typical trait for guyot slopes.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=269}}

Regional setting

A number of seamounts occur in the Western Pacific Ocean which often form lines and groups and have the appearance of drowned atolls,{{sfn|Jansa|Arnaud Vanneau|1995|p=311}} with flat tops at depths of {{convert|1|-|2|km}} below sea level.{{sfn|Haggerty|Premoli Silva|1995|p=935}} They often appear to be shallower than would be expected from plate tectonics and the normal thermal subsidence of the oceanic crust. Their formation has been explained by hotspot volcanism in the region of present-day French Polynesia although many of them do not appear to have originated from simple hotspot mechanisms. These seamounts are considered to be part of the Darwin Rise,{{sfn|McNutt|Winterer|Sager|Natland|1990|p=1101}} which includes MIT.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}}

About five different hotspots were active in French Polynesia within the last twenty million years.{{sfn|Koppers|Staudigel|Christie|Dieu|1995|p=535}} Formation of the MIT Guyot has been linked to the Tahiti hotspot.{{sfn|Koppers|Staudigel|Christie|Dieu|1995|p=539}} However, linking specific seamounts to specific hotspots runs into difficulties when the linkage between one hotspot-seamount pair involves a mismatch between another hotspot-seamount pair.[1]

Composition

MIT Guyot has erupted basaltic rocks,{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} with rock composition changing over time from alkali basalts over basanite to hawaiite.{{sfn|Koppers|Staudigel|Pringle|Wijbrans|2003|p=24}} Phenocryst phases include clinopyroxene, olivine and plagioclase, and apatite, augite and pyroxene are additional components.{{sfn|Koppers|Staudigel|Christie|Dieu|1995|p=539}} Isotope ratios resemble these of the northern Wake seamounts and of the Marquesas hotspot.{{sfn|Koppers|Staudigel|Pringle|Wijbrans|2003|p=27}}

Alteration of basalts has given rise to clay,{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=263}} chlorite, goethite, hematite, hydromica, kaolinite and especially smectite{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} but also zeolite. Palagonite and sideromelane have been found in some samples.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=263}} Clays contain pyrite.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} Carbonates include both bindstone,{{sfn|Jansa|Arnaud Vanneau|1995|p=318}} grainstone, packstone and wackestone with subordinate rudstone.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} Some carbonate sediments take the form of ooids, peloids and pisoids{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=262}} or contain vuggy porosities.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=263}}

Geologic history

MIT Guyot formed during the Cretaceous{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=252}} about 123 million years ago.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} Based on paleomagnetic data, the seamount formed at a latitude of 11.5 ± 2.3 degrees south[1] and is at least 118 million years old.{{sfn|McNutt|Winterer|Sager|Natland|1990|p=1102}} A paleolatitude of 32.8 degrees south may also be possible and would be consistent with that of the Macdonald hotspot.{{sfn|Haggerty|Premoli Silva|1995|p=941}}

First volcanism

Argon–argon dating has yielded ages of 119.6{{sfn|Jansa|Arnaud Vanneau|1995|p=313}}–124 million years for volcanic rocks taken from MIT Guyot.[1] There appear to have been three separate volcanic episodes{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} which generated three sets of volcanic rocks with different composition.{{sfn|Koppers|Staudigel|Christie|Dieu|1995|p=539}} Basaltic lava flows form stacks that were emplaced one on top of another and on top of other types of volcanic deposits. The flows are often separated by weathered layers.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} A {{convert|9.6|m}} thick soil developed on these lava flows;{{sfn|Haggerty|Premoli Silva|1995|p=942}} the soil was probably removed by erosion such as wave action in some places.{{sfn|Ogg|1995|p=341}}

Carbonate platform and late volcanism

During the Aptian, a carbonate platform started developing on the exposed volcanic rocks of MIT. It developed in marine settings and formed two {{convert|118|m}} and {{convert|396|m}} thick carbonate layers continuing into the Albian, the two layers being separated by a {{convert|204|m}} thick volcanic succession.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} The carbonate platform probably started out as a fringing reef or barrier reef{{sfn|Jansa|Arnaud Vanneau|1995|p=327}} with the sole drill core from MIT indicating a delay of about 1-2 million years between the end of volcanism and the beginning of platform growth,{{sfn|Haggerty|Premoli Silva|1995|p=944}} and at least seven different stages of sea level rise have been recognized.{{sfn|Jansa|Arnaud Vanneau|1995|p=329}} The total lifespan of the active carbonate platform is about 19 million years.{{sfn|Haggerty|Premoli Silva|1995|p=946}}

The MIT Guyot platform was characterized by the presence of both a carbonate platform and an atoll-like structure{{sfn|Jansa|Arnaud Vanneau|1995|p=317}} with lagoonal structures that were progressively filled with sands, some of which were of biogenic origin. The lagoonal structure was affected by a secondary volcanic event but continued shallowing afterwards.{{sfn|Arnaud Vanneau|Premoli Silva|1995|p=212}} Elsewhere bioherms as well as patch reef like structures evolved{{sfn|Jansa|Arnaud Vanneau|1995|p=322}} and sandy shoals rimmed the lagoon.{{sfn|Jansa|Arnaud Vanneau|1995|p=329}} Shallow muddy environments developed in some places of the platform, including freshwater areas where charophytes developed.{{sfn|Arnaud Vanneau|Premoli Silva|1995|p=212}} However, there is no evidence that the carbonate platform of MIT featured vegetation at that time.{{sfn|Jansa|Arnaud Vanneau|1995|p=323}}

Some algae{{efn|Among the algae genera found on MIT are Acroporella, Boueina, Cylindroporella, Montiella, Parachaetetes, Polystrata, Salpingoporella, Similiclypeina, Solenopora, Suppiluliumaella and Triploporella.[7]}}{{sfn|Arnaud Vanneau|Premoli Silva|1995|p=212}} and foraminifera{{efn|Among the foraminifera genera found on MIT are Ammobaculites, Arenobulimina, Axiopolina, Bdelloidina, Coskinolinella, Cuneolina, Daxia, Debarina, Lituola, Neotrocholina, Nezzazata, Novalesia, Orbitolina, Pseudonummoloculina, Praechrysalidina, Sabaudia, Tubiphytes, Valvulineria, Vercorsella and Voloshinoides.{{sfn|Arnaud Vanneau|Premoli Silva|1995|pp=202-210}}}} lived on the MIT Guyot platform,{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} the former were the source of rhodoliths.{{sfn|Jansa|Arnaud Vanneau|1995|p=317}} The algae are warm water shallow sea genera, reflecting warm waters at MIT when it was a carbonate platform.[7] Storm activity led to the redeposition of carbonate sediments, forming shoals.{{sfn|Ogg|1995|p=345}}

Various animals have been identified in the carbonate deposit as well, they inhabited the platform when it was still active.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} These include bivalves, bryozoans, corals, echinoids, gastropods, ostracods,{{sfn|Arnaud Vanneau|Premoli Silva|1995|p=212}} oysters,{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} rudists, sponges{{sfn|Arnaud Vanneau|Premoli Silva|1995|p=212}} and stromatoporoids.{{sfn|Jansa|Arnaud Vanneau|1995|p=318}} Additionally, crustacean coproliths have been dredged from the seamount.{{sfn|Senowbari-Daryan|Grötsch|1992|p=85}}

Renewed volcanic activity took place after the start of carbonate deposition, perhaps separated from the previous volcanic episodes by about 4 million years, leading to eruptions through the carbonate platform.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=263}} After a prelude characterized by the deposition of several ash layers, two major explosive eruptions shook the platform{{sfn|Ogg|1995|p=343}} The late volcanic activity{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} at MIT took place underwater, forming pyroclastic material including lapilli and tephra but also reworked carbonate material.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=252}} Also, tuffs and volcanic ash layers were emplaced.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} The eruption may have started as a phreatomagmatic eruption when water within a lagoon or within pores of the carbonate platform interacted with the rising magma.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=267}} The eruption formed an eruption column and a crater within the carbonate platform that was subsequently filled by other eruption products.{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=269}} It is likely that this volcanic activity caused the formation of a volcanic island above the carbonate platform.{{sfn|Ogg|1995|p=344}}

Drowning and later evolution

Growth of the carbonate platform ceased during the late Albian.{{sfn|Arnaud Vanneau|Premoli Silva|1995|p=210}} Such a drowning process has been observed at other Pacific guyots such as Takuyo-Daisan, Limalok and Wōdejebato at different times and appears to occur for a multitude of reasons. One of these is a brief period of emergence of the carbonate platform which reduces the space available for carbonate-producing organisms and thus their carbonate production rate{{sfn|Ogg|Camoin|Arnaud Vanneau|1995|p=245}} until it can no longer compete with sea level rises. Another factor is an increasingly unfavourable environment as the platforms approach the equator; all these platforms drowned as they approached the equator perhaps owing to excessively hot waters and too many nutrients that favour the growth of algae; such algal growth is found in the last carbonates deposited at MIT.{{sfn|Ogg|Camoin|Arnaud Vanneau|1995|p=246}} In the case of MIT, the platform underwent a temporary uplift before drowning.{{sfn|Jansa|Arnaud Vanneau|1995|p=329}}

A pelagic cap has formed on MIT but is rather thin, only {{convert|3.2|m}} of material have accumulated{{sfn|Martin|Breitkreuz|Egenhoff|Enos|2004|p=258}} and that mainly in surface depressions.[9] It includes manganese crusts{{efn|Containing asbolane, buserite and vernadite minerals.}}{{sfn|Jansa|Arnaud Vanneau|1995|p=313}} which were emplaced over the 95 million years that lapsed between the drowning of the platform and the Miocene, when pelagic sedimentation commenced at MIT.{{sfn|Jansa|Arnaud Vanneau|1995|p=327}} Three different phases of pelagic sedimentation during the Miocene-Pliocene, Pliocene and Pleistocene have been found.[9]

Notes

{{notelist}}

References

1. ^{{Citation|last=Watkins|first=D.K.|date=December 1995|page=680|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_41.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.066.1995|access-date=2018-08-06|last2=Pearson|first2=P.N.|last3=Erba|first3=E.|last4=Rack|first4=F.R.|last5=Premoli Silva|first5=I.|last6=Bohrmann|first6=H.W.|last7=Fenner|first7=J.|last8=Hobbs|first8=P.R.N.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Stratigraphy and Sediment Accumulation Patterns of the Upper Cenozoic Pelagic Carbonate Caps of Guyots in the Northwestern Pacific Ocean}}
2. ^{{Citation|last=Masse|first=J.-P.|date=December 1995|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_11.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.073.1995|access-date=2018-08-06|last2=Arnaud Vanneau|first2=A.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Early Cretaceous Calcareous Algae of the Northwest Pacific Guyots}}
3. ^{{cite journal |last1=Tarduno |first1=John A. |last2=Gee |first2=Jeff |title=Large-scale motion between Pacific and Atlantic hotspots |journal=Nature |date=November 1995 |volume=378 |issue=6556 |page=477|doi=10.1038/378477a0 |url=https://www.nature.com/articles/378477a0 |language=En |issn=0028-0836|subscription=yes}}
[1][2][3]
}}

Sources

{{refbegin}}
  • {{Citation|last=Arnaud Vanneau|first=A.|date=December 1995|ref=harv|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_10.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.002.1995|access-date=2018-08-06|last2=Premoli Silva|first2=I.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Biostratigraphy and Systematic Description of Benthic Foraminifers from Mid-Cretaceous Shallow-Water Carbonate Platform Sediments at Sites 878 and 879 (MIT and Takuyo-Daisan Guyots)}}
  • {{Citation|last=Erba|first=E.|date=December 1995|ref=harv|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_08.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.071.1995|access-date=2018-08-06|last2=Premoli Silva|first2=I.|last3=Watkins|first3=D.K.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Cretaceous Calcareous Plankton Biostratigraphy of Sites 872 through 879}}
  • {{Citation|last=Haggerty|first=J.A.|date=December 1995|ref=harv|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_53.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.074.1995|access-date=2018-08-06|last2=Premoli Silva|first2=I.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Comparison of the Origin and Evolution of Northwest Pacific Guyots Drilled during Leg 144}}
  • {{Citation|last=Jansa|first=L.F.|date=December 1995|ref=harv|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_16.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.039.1995|access-date=2018-08-06|last2=Arnaud Vanneau|first2=A.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Carbonate Buildup and Sea-Level Changes at MIT Guyot, Western Pacific}}
  • {{Citation|last=Koppers|first=A.A.P.|date=December 1995|ref=harv|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_31.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.031.1995|access-date=2018-08-06|last2=Staudigel|first2=H.|last3=Christie|first3=D.M.|last4=Dieu|first4=J.J.|last5=Pringle|first5=M.S.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Sr-Nd-Pb Isotope Geochemistry of Leg 144 West Pacific Guyots: Implications for the Geochemical Evolution of the "SOPITA" Mantle Anomaly}}
  • {{cite journal |last1=Koppers |first1=Anthony A. P. |last2=Staudigel |first2=Hubert |last3=Pringle |first3=Malcolm S. |last4=Wijbrans |first4=Jan R. |title=Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? |journal=Geochemistry, Geophysics, Geosystems |date=October 2003 |volume=4 |issue=10 |doi=10.1029/2003GC000533 |ref=harv}}
  • {{cite journal |last1=Martin |first1=U |last2=Breitkreuz |first2=C |last3=Egenhoff |first3=S |last4=Enos |first4=Paul |last5=Jansa |first5=L |title=Shallow-marine phreatomagmatic eruptions through a semi-solidified carbonate platform (ODP Leg 144, Site 878, Early Cretaceous, MIT Guyot, West Pacific) |journal=Marine Geology |date=March 2004 |volume=204 |issue=3–4 |pages=251–272 |doi=10.1016/S0025-3227(03)00358-X |url=https://www.sciencedirect.com/science/article/pii/S002532270300358X |ref=harv |language=en |issn=0025-3227}}
  • {{cite journal |last1=McNutt |first1=M. K. |last2=Winterer |first2=E. L. |last3=Sager |first3=W. W. |last4=Natland |first4=J. H. |last5=Ito |first5=G. |title=The Darwin Rise: A Cretaceous superswell? |journal=Geophysical Research Letters |date=July 1990 |volume=17 |issue=8 |pages=1101–1104 |doi=10.1029/gl017i008p01101 |ref=harv |language=en |issn=0094-8276}}
  • {{Citation|last=Ogg|first=J.G.|date=December 1995|ref=harv|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_17.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.041.1995|access-date=2018-08-06|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=MIT Guyot: Depositional History of the Carbonate Platform from Downhole Logs at Site 878 (Lagoon)}}
  • {{Citation|last=Ogg|first=J.G.|date=December 1995|ref=harv|chapter-url=http://www-odp.tamu.edu/publications/144_SR/VOLUME/CHAPTERS/sr144_12.pdf|publisher=Ocean Drilling Program|doi=10.2973/odp.proc.sr.144.042.1995|access-date=2018-08-06|last2=Camoin|first2=G.F.|last3=Arnaud Vanneau|first3=A.|title=Proceedings of the Ocean Drilling Program, 144 Scientific Results|volume=144|series=Proceedings of the Ocean Drilling Program|chapter=Limalok Guyot: Depositional History of the Carbonate Platform from Downhole Logs at Site 871 (Lagoon)}}
  • {{cite journal |last1=Senowbari-Daryan|first1=Baba |last2=Grötsch|first2=Jürgen |title=Ichnologic note |journal=Ichnos |date=1992|volume=2 |issue=1 |pages=85–88 |doi=10.1080/10420949209380077 |ref=harv |language=en |issn=1042-0940}}
{{refend}}

3 : Cretaceous volcanoes|Seamounts of the Pacific Ocean|Guyots

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 9:38:44