词条 | Adherent point |
释义 |
In mathematics, an adherent point (also closure point or point of closure or contact point)[1] of a subset A of a topological space X, is a point x in X such that every open set containing x contains at least one point of A. A point x is an adherent point for A if and only if x is in the closure of A. This definition differs from that of a limit point, in that for a limit point it is required that every open set containing contains at least one point of A different from x. Thus every limit point is an adherent point, but the converse is not true. An adherent point of A is either a limit point of A or an element of A (or both). An adherent point which is not a limit point is an isolated point. Intuitively, having an open set A defined as the area within (but not including) some boundary, the adherent points of A are those of A including the boundary. Examples
Notes1. ^ Steen, p. 5; Lipschutz, p. 69; Adamson, p. 15. References
1 : General topology |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。