请输入您要查询的百科知识:

 

词条 Open microfluidics
释义

  1. Types of open microfluidics

      Open-channel microfluidics    Paper-based microfluidics    Thread-based microfluidics  

  2. Advantages

  3. Disadvantages

  4. Applications

  5. References

Microfluidics refers to the flow of fluid in channels or networks with at least one dimension on the micron scale.[1][2] In open microfluidics, also referred to as open surface microfluidics or open-space microfluidics, at least one boundary confining the fluid flow of a system is removed, exposing the fluid to air or another interface such as a second fluid.[1][3][4]

Types of open microfluidics

Open microfluidics can be categorized into various subsets. Some examples of these subsets include open-channel microfluidics, paper-based, and thread-based microfluidics.[1][5][6]

Open-channel microfluidics

In open-channel microfluidics, a surface tension-driven capillary flow occurs and is referred to as spontaneous capillary flow (SCF).[1][7] SCF occurs when the pressure at the advancing meniscus is negative.[1] The geometry of the channel and contact angle (θ) of fluids on the surface of the channel can be used to predict whether SCF will occur in the channel by the equation:

where pf is the free perimeter of the channel (i.e., the interface not in contact with the channel wall), pw is the wetted perimeter (i.e., the walls in contact with the fluid), and θ is the contact angle of the fluid on the material of the device.[1][5]

Paper-based microfluidics

Paper-based microfluidics utilizes the wicking ability of paper for functional readouts.[8][9] Paper-based microfluidics is an attractive method because paper is cheap, easily accessible, and has a low environmental impact. Paper is also versatile because it is available in various thicknesses and pore sizes.[8] Coatings such as wax have been used to guide flow in paper microfluidics.[10] In some cases, dissolvable barriers have been used to create boundaries on the paper and control the fluid flow.[11] The application of paper as a diagnostic tool has shown to be powerful because it has successfully been used to detect glucose levels,[12] bacteria,[13] viruses,[14] and other components in whole blood.[15] Cell culture methods within paper have also been developed.[16][17] Lateral flow immunoassays, such as those used in pregnancy tests, are one example of the application of paper for point of care or home-based diagnostics.[18] Disadvantages include difficulty of fluid retention and high limits of detection.

Thread-based microfluidics

Thread-based microfluidics, an offshoot from paper-based microfluidics, utilizes the same capillary based wicking capabilities.[19] Common thread materials include nitrocellulose, rayon, nylon, hemp, wool, polyester, and silk.[20] Threads are versatile because they can be woven to form specific patterns.[21] Additionally, two or more threads can converge together in a knot bringing two separate ‘streams’ of fluid together as a reagent mixing method.[22] Threads are also relatively strong and difficult to break from handling which makes them stable over time and easy to transport.[20] Thread-based microfluidics has been applied to 3D tissue engineering and analyte analysis.[23][24]

Advantages

One of the main advantages of open microfluidics is ease of accessibility which enables intervention (i.e., for adding or removing reagents) to the flowing liquid in the system.[25] Open microfluidics also allows simplicity of fabrication thus eliminating the need to bond surfaces. When one of the boundaries of a system is removed, a larger liquid-gas interface results, which enables liquid-gas reactions.[1][26] Open microfluidic devices enable better optical transparency because at least one side of the system is not covered by the material which can reduce autofluorescence during imaging.[27] Further, open systems minimize and sometimes eliminate bubble formation, a common problem in closed systems.[1]

In closed system microfluidics, the flow in the channels is driven by pressure via pumps (syringe pumps), valves (trigger valves), or electrical field.[28] Open system microfluidics enable surface-tension driven flow in channels thereby eliminating the need for external pumping methods.[25][29] For example, some open microfluidic devices consist of a reservoir port and pumping port that can be filled with fluid using a pipette.[1][5][25] Eliminating external pumping requirements lowers cost and enables device use in all laboratories with pipettes.[26]

Disadvantages

Some drawbacks of open microfluidics include evaporation,[30] contamination,[31] and limited flow rate.[4] Open systems are susceptible to evaporation which can greatly affect readouts when fluid volumes are on the microscale.[30] Additionally, due to the nature of open systems, they are more susceptible to contamination than closed systems.[31] Cell culture and other methods where contamination or small particulates are a concern must be carefully performed to prevent contamination. Lastly, open systems have a limited flow rate because induced pressures cannot be used to drive flow.[4]

Applications

Like many microfluidic technologies, open system microfluidics has been applied to nanotechnology, biotechnology, fuel cells, and point of care (POC) testing.[1][4][32] For cell-based studies, open-channel microfluidic devices enable access to cells for single cell probing within the channel.[33] Other applications include capillary gel electrophoresis, water-in-oil emulsions, and biosensors for POC systems.[3][34][35] Suspended microfluidic devices, open microfluidic devices where the floor of the device is removed, have been used to study cellular diffusion and migration of cancer cells.[5] Suspended and rail-based microfluidics have been used for micropatterning and studying cell communication.[1]

References

1. ^10 {{Cite book|title=Open microfluidics|last=1952-|first=Berthier, Jean|date=2016|publisher=Wiley|others=Brakke, Kenneth A., Berthier, Erwin.|isbn=9781118720936|location=Hoboken, NJ|oclc=953661963}}
2. ^{{Cite journal|last=Whitesides|first=George M.|date=July 2006|title=The origins and the future of microfluidics|journal=Nature|volume=442|issue=7101|pages=368–373|doi=10.1038/nature05058|pmid=16871203|issn=0028-0836}}
3. ^{{Cite journal|last=Pfohl|first=Thomas|last2=Mugele|first2=Frieder|last3=Seemann|first3=Ralf|last4=Herminghaus|first4=Stephan|date=2003-12-08|title=Trends in Microfluidics with Complex Fluids|journal=ChemPhysChem|volume=4|issue=12|pages=1291–1298|doi=10.1002/cphc.200300847|pmid=14714376|issn=1439-4235}}
4. ^{{Cite journal|last=Kaigala|first=Govind V.|last2=Lovchik|first2=Robert D.|last3=Delamarche|first3=Emmanuel|date=2012-10-30|title=Microfluidics in the "Open Space" for Performing Localized Chemistry on Biological Interfaces|journal=Angewandte Chemie International Edition|volume=51|issue=45|pages=11224–11240|doi=10.1002/anie.201201798|issn=1433-7851}}
5. ^{{Cite journal|last=Casavant|first=B. P.|last2=Berthier|first2=E.|last3=Theberge|first3=A. B.|last4=Berthier|first4=J.|last5=Montanez-Sauri|first5=S. I.|last6=Bischel|first6=L. L.|last7=Brakke|first7=K.|last8=Hedman|first8=C. J.|last9=Bushman|first9=W.|date=2013-05-31|title=Suspended microfluidics|journal=Proceedings of the National Academy of Sciences|volume=110|issue=25|pages=10111–10116|doi=10.1073/pnas.1302566110|pmid=23729815|issn=0027-8424|pmc=3690848}}
6. ^{{Cite journal|last=Yamada|first=Kentaro|last2=Shibata|first2=Hiroyuki|last3=Suzuki|first3=Koji|last4=Citterio|first4=Daniel|date=2017|title=Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges|journal=Lab on a Chip|volume=17|issue=7|pages=1206–1249|doi=10.1039/c6lc01577h|pmid=28251200|issn=1473-0197}}
7. ^{{Cite journal|last=Yang|first=Die|last2=Krasowska|first2=Marta|last3=Priest|first3=Craig|last4=Popescu|first4=Mihail N.|last5=Ralston|first5=John|date=2011-09-07|title=Dynamics of Capillary-Driven Flow in Open Microchannels|journal=The Journal of Physical Chemistry C|volume=115|issue=38|pages=18761–18769|doi=10.1021/jp2065826|issn=1932-7447}}
8. ^{{Cite journal|last=Hosseini|first=Samira|last2=Vázquez-Villegas|first2=Patricia|last3=Martínez-Chapa|first3=Sergio O.|date=2017-08-22|title=Paper and Fiber-Based Bio-Diagnostic Platforms: Current Challenges and Future Needs|url=http://www.mdpi.com/2076-3417/7/8/863|journal=Applied Sciences|volume=7|issue=8|pages=863|doi=10.3390/app7080863}}
9. ^{{Cite journal|date=2015-09-01|title=Rapid light transmittance measurements in paper-based microfluidic devices|url=https://www.sciencedirect.com/science/article/pii/S2214180415300064|journal=Sensing and Bio-Sensing Research|volume=5|pages=55–61|doi=10.1016/j.sbsr.2015.07.005|issn=2214-1804|last1=Swanson|first1=Christina|last2=Lee|first2=Stephen|last3=Aranyosi|first3=A.J.|last4=Tien|first4=Ben|last5=Chan|first5=Carol|last6=Wong|first6=Michelle|last7=Lowe|first7=Jared|last8=Jain|first8=Sidhartha|last9=Ghaffari|first9=Roozbeh}}
10. ^{{Cite journal|last=Müller|first=R. H.|last2=Clegg|first2=D. L.|date=September 1949|title=Automatic Paper Chromatography|journal=Analytical Chemistry|volume=21|issue=9|pages=1123–1125|doi=10.1021/ac60033a032|issn=0003-2700}}
11. ^{{Cite journal|last=Fu|first=Elain|last2=Lutz|first2=Barry|last3=Kauffman|first3=Peter|last4=Yager|first4=Paul|date=2010|title=Controlled reagent transport in disposable 2D paper networks|url=http://xlink.rsc.org/?DOI=b919614e|journal=Lab on a Chip|volume=10|issue=7|pages=918–20|doi=10.1039/b919614e|issn=1473-0197|pmc=3228840|pmid=20300678}}
12. ^{{Cite journal|last=Martinez|first=Andres W.|last2=Phillips|first2=Scott T.|last3=Carrilho|first3=Emanuel|last4=Thomas|first4=Samuel W.|last5=Sindi|first5=Hayat|last6=Whitesides|first6=George M.|date=May 2008|title=Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis|journal=Analytical Chemistry|volume=80|issue=10|pages=3699–3707|doi=10.1021/ac800112r|pmid=18407617|issn=0003-2700|pmc=3761971}}
13. ^{{Cite journal|last=Shih|first=Cheng-Min|last2=Chang|first2=Chia-Ling|last3=Hsu|first3=Min-Yen|last4=Lin|first4=Jyun-Yu|last5=Kuan|first5=Chen-Meng|last6=Wang|first6=Hsi-Kai|last7=Huang|first7=Chun-Te|last8=Chung|first8=Mu-Chi|last9=Huang|first9=Kui-Chou|date=December 2015|title=Paper-based ELISA to rapidly detect Escherichia coli|journal=Talanta|volume=145|pages=2–5|doi=10.1016/j.talanta.2015.07.051|pmid=26459436|issn=0039-9140}}
14. ^{{Cite journal|last=Wang|first=Hsi-Kai|last2=Tsai|first2=Cheng-Han|last3=Chen|first3=Kuan-Hung|last4=Tang|first4=Chung-Tao|last5=Leou|first5=Jiun-Shyang|last6=Li|first6=Pi-Chun|last7=Tang|first7=Yin-Liang|last8=Hsieh|first8=Hsyue-Jen|last9=Wu|first9=Han-Chung|date=February 2014|title=Immunoassays: Cellulose-Based Diagnostic Devices for Diagnosing Serotype-2 Dengue Fever in Human Serum (Adv. Healthcare Mater. 2/2014)|journal=Advanced Healthcare Materials|volume=3|issue=2|pages=154|doi=10.1002/adhm.201470008|issn=2192-2640}}
15. ^{{Cite journal|last=Yang|first=Xiaoxi|last2=Forouzan|first2=Omid|last3=Brown|first3=Theodore P.|last4=Shevkoplyas|first4=Sergey S.|date=2012|title=Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices|journal=Lab Chip|volume=12|issue=2|pages=274–280|doi=10.1039/c1lc20803a|issn=1473-0197}}
16. ^{{Cite journal|last=Tao|first=Fang Fang|last2=Xiao|first2=Xia|last3=Lei|first3=Kin Fong|last4=Lee|first4=I-Chi|date=2015-03-18|title=Paper-based cell culture microfluidic system|journal=BioChip Journal|volume=9|issue=2|pages=97–104|doi=10.1007/s13206-015-9202-7|issn=1976-0280}}
17. ^{{Cite journal|last=Walsh|first=David I.|last2=Lalli|first2=Mark L.|last3=Kassas|first3=Juliette M.|last4=Asthagiri|first4=Anand R.|last5=Murthy|first5=Shashi K.|date=2015-05-18|title=Cell Chemotaxis on Paper for Diagnostics|journal=Analytical Chemistry|volume=87|issue=11|pages=5505–5510|doi=10.1021/acs.analchem.5b00726|pmid=25938457|issn=0003-2700}}
18. ^{{Cite journal|last=Lam|first=Trinh|last2=Devadhasan|first2=Jasmine P.|last3=Howse|first3=Ryan|last4=Kim|first4=Jungkyu|date=2017-04-26|title=A Chemically Patterned Microfluidic Paper-based Analytical Device (C-µPAD) for Point-of-Care Diagnostics|journal=Scientific Reports|volume=7|issue=1|doi=10.1038/s41598-017-01343-w|pmid=28446756|issn=2045-2322}}
19. ^{{Cite journal|last=Erenas|first=Miguel M.|last2=de Orbe-Payá|first2=Ignacio|last3=Capitan-Vallvey|first3=Luis Fermin|date=2016-04-29|title=Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis|journal=Analytical Chemistry|volume=88|issue=10|pages=5331–5337|doi=10.1021/acs.analchem.6b00633|pmid=27077212|issn=0003-2700}}
20. ^{{Cite journal|last=Reches|first=Meital|last2=Mirica|first2=Katherine A.|last3=Dasgupta|first3=Rohit|last4=Dickey|first4=Michael D.|last5=Butte|first5=Manish J.|last6=Whitesides|first6=George M.|date=2010-05-24|title=Thread as a Matrix for Biomedical Assays|journal=ACS Applied Materials & Interfaces|volume=2|issue=6|pages=1722–1728|doi=10.1021/am1002266|pmid=20496913|issn=1944-8244|citeseerx=10.1.1.646.8048}}
21. ^{{Cite journal|last=Li|first=Xu|last2=Tian|first2=Junfei|last3=Shen|first3=Wei|date=2009-12-09|title=Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics|journal=ACS Applied Materials & Interfaces|volume=2|issue=1|pages=1–6|doi=10.1021/am9006148|pmid=20356211|issn=1944-8244}}
22. ^{{Cite journal|last=Ballerini|first=David R.|last2=Li|first2=Xu|last3=Shen|first3=Wei|date=March 2011|title=Flow control concepts for thread-based microfluidic devices|journal=Biomicrofluidics|volume=5|issue=1|pages=014105|doi=10.1063/1.3567094|pmid=21483659|pmc=3073008|issn=1932-1058}}
23. ^{{Cite journal|last=Mostafalu|first=Pooria|last2=Akbari|first2=Mohsen|last3=Alberti|first3=Kyle A.|last4=Xu|first4=Qiaobing|last5=Khademhosseini|first5=Ali|last6=Sonkusale|first6=Sameer R.|date=2016-07-18|title=A toolkit of thread-based microfluidics, sensors and electronics for 3D tissue embedding for medical diagnostics|journal=Microsystems & Nanoengineering|volume=2|issue=1|doi=10.1038/micronano.2016.39|issn=2055-7434}}
24. ^{{Cite journal|last=Erenas|first=Miguel M.|last2=de Orbe-Payá|first2=Ignacio|last3=Capitan-Vallvey|first3=Luis Fermin|date=2016-04-29|title=Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis|journal=Analytical Chemistry|volume=88|issue=10|pages=5331–5337|doi=10.1021/acs.analchem.6b00633|pmid=27077212|issn=0003-2700}}
25. ^{{Cite journal|last=Lee|first=Jing J.|last2=Berthier|first2=Jean|last3=Brakke|first3=Kenneth A.|last4=Dostie|first4=Ashley M.|last5=Theberge|first5=Ashleigh B.|last6=Berthier|first6=Erwin|date=2018-04-25|title=Droplet Behavior in Open Biphasic Microfluidics|journal=Langmuir|volume=34|issue=18|pages=5358–5366|doi=10.1021/acs.langmuir.8b00380|pmid=29692173|issn=0743-7463}}
26. ^{{Cite journal|last=Zhao|first=B.|date=2001-02-09|title=Surface-Directed Liquid Flow Inside Microchannels|journal=Science|volume=291|issue=5506|pages=1023–1026|doi=10.1126/science.291.5506.1023|pmid=11161212|issn=0036-8075}}
27. ^{{Cite journal|last=Young|first=Edmond W.K.|last2=Berthier|first2=Erwin|last3=Beebe|first3=David J.|date=2013-01-02|title=Assessment of enhanced autofluorescence and impact on cell microscopy for microfabricated thermoplastic devices|journal=Analytical Chemistry|volume=85|issue=1|pages=44–49|doi=10.1021/ac3034773|issn=0003-2700|pmc=4017339|pmid=23249264}}
28. ^{{Cite journal|last=Sackmann|first=Eric K.|last2=Fulton|first2=Anna L.|last3=Beebe|first3=David J.|date=2014-03-12|title=The present and future role of microfluidics in biomedical research|journal=Nature|volume=507|issue=7491|pages=181–189|doi=10.1038/nature13118|pmid=24622198|issn=0028-0836}}
29. ^{{Cite book|title=The Motion of a Surface by Its Mean Curvature. (MN-20)|last=Brakke|first=Kenneth A.|date=2015-01-31|publisher=Princeton University Press|isbn=9781400867431|location=Princeton|doi = 10.1515/9781400867431}}
30. ^{{Cite journal|last=Kachel|first=Sibylle|last2=Zhou|first2=Ying|last3=Scharfer|first3=Philip|last4=Vrančić|first4=Christian|last5=Petrich|first5=Wolfgang|last6=Schabel|first6=Wilhelm|date=2014|title=Evaporation from open microchannel grooves|journal=Lab Chip|volume=14|issue=4|pages=771–778|doi=10.1039/c3lc50892g|pmid=24345870|issn=1473-0197}}
31. ^{{Cite journal|last=Higashi|first=Kazuhiko|last2=Ogawa|first2=Miho|last3=Fujimoto|first3=Kazuma|last4=Onoe|first4=Hiroaki|last5=Miki|first5=Norihisa|date=2017-06-03|title=Hollow Hydrogel Microfiber Encapsulating Microorganisms for Mass-Cultivation in Open Systems|journal=Micromachines|volume=8|issue=6|pages=176|doi=10.3390/mi8060176|issn=2072-666X}}
32. ^{{Cite journal|last=Dak|first=Piyush|last2=Ebrahimi|first2=Aida|last3=Swaminathan|first3=Vikhram|last4=Duarte-Guevara|first4=Carlos|last5=Bashir|first5=Rashid|last6=Alam|first6=Muhammad|date=2016-04-14|title=Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms|journal=Biosensors|volume=6|issue=2|pages=14|doi=10.3390/bios6020014|issn=2079-6374}}
33. ^{{Cite journal|last=Hsu|first=Chia-Hsien|last2=Chen|first2=Chihchen|last3=Folch|first3=Albert|date=2004|title="Microcanals" for micropipette access to single cells in microfluidic environments|journal=Lab Chip|volume=4|issue=5|pages=420–424|doi=10.1039/b404956j|pmid=15472724|issn=1473-0197}}
34. ^{{Cite journal|last=Li|first=C.|last2=Boban|first2=M.|last3=Tuteja|first3=A.|date=2017|title=Open-channel, water-in-oil emulsification in paper-based microfluidic devices|journal=Lab on a Chip|volume=17|issue=8|pages=1436–1441|doi=10.1039/c7lc00114b|pmid=28322402|issn=1473-0197}}
35. ^{{Cite journal|last=Gutzweiler|first=Ludwig|last2=Gleichmann|first2=Tobias|last3=Tanguy|first3=Laurent|last4=Koltay|first4=Peter|last5=Zengerle|first5=Roland|last6=Riegger|first6=Lutz|date=2017-05-15|title=Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale|journal=Electrophoresis|volume=38|issue=13–14|pages=1764–1770|doi=10.1002/elps.201700001|pmid=28426159|issn=0173-0835}}

1 : Microfluidics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 7:21:48