词条 | Photoautotropic tissue culture |
释义 |
}}Photoautotrophic tissue culture is defined as "micropropagation without sugar in the culture medium, in which the growth or accumulation of carbohydrates of cultures is dependent fully upon photosynthesis and inorganic nutrient uptake".[1] There are multiple advantages to using this form of propagation, because this system actively encourages plant growth. Namely, there are lower contamination rates due to the lack of sugar in the growing medium, and more catering to plants that aren't able to be successfully multiplied by conventional means. Many plants have trouble being propagated to due physiological or morphological inhibitions that make root formation difficult from cuttings. And after the plantlet develops in vitro, then the ex-planting process can often be very stressful and result in plant death, which isn't a problem for pre-acclimated plantlets grown via photoautotrophic tissue culture (In this context, pre-acclimated refers to plantlets that have developed a cuticle and have been cultivated in an open air system as opposed to the closed system seen in typical operations). History and Development of Photoautotrophic tissue cultureA light-dependent reaction was observed in that a decrease in the available CO2 was found after the light switch in sealed containers used in conventional tissue culture.[2] This led to the idea that plants, even in vitro, are capable of actively producing sugars via photosynthesis and this idea was quickly tested and validated using potato and strawberry in 1988.[3] Pros and Cons of Photoautotrophic tissue cultureMajor limitations inhibit the widespread adoption of this methodology. Namely, there is a more stringent environmental maintenance that needs to be practiced. Proper ventilation, temperature regulation, CO2 concentration, and avoiding contamination are some of the hardest hurdles to overcome if resources are limiting. Generally speaking, temperature and light are already going to be standards of control practiced in micropropagation. However, ventilation and CO2 concentration become a challenge, especially while trying to maintain sterile conditions (even though if there is no sugar in the growing medium, aseptic technique is still an essential practice that is required to avoid contamination). Current use of the TechnologyAs of 2016 a number of genera have been found to be well-suited to this form of micro propagation. Many researchers have adopted aspects of this type of propagation for certain projects by integrating ventilated lids or altering light intensity and sugar content in media, but only select few genera have been fully employed in a micro propagation project using this technology. They include Gerbera,[4] Dendrobium,[5] Hypericum,[6] Momordica,[7] Myrtus,[8] Canna,[9] Billbergia,[10] Neoregelia,[11] Solanum,[12] Capsicum,[13] Dioscorea,[14] Saccharum,[15] Pfaffia,[16] and Cocos.[17] This list isn't truly comprehensive, and there are many more where this system has been employed. However these genera are subject to complete protocol establishment and have known sources in the scientific community. for the most part these systems are establishment for ease of germplasm exchange, increased production, or to test a new form of propagating a given genus. Use of Gas-Permeable Membrane Discs and Forced VentilationBy using permeable discs as lids, air diffusion within the culture vessel can be improved. This will in turn allow for increased carbon dioxide concentrations during 'day' periods and less water vapor in the container which encourages transpiration. These combined features have an overall effect of enhancing photosynthesis, increasing growth rate, and shortening production time.[1][18] Using forced ventilation tubules within the culture vessels was developed after the idea of using the discs, as a way to ensure that uniform content of water vappor and carbon dioxide is within each individual container. This ensures uniform growth habit and less fringe effects.[19] References1. ^1 {{Cite journal|last=Kozai|first=Toyoki|date=1991|title=Photoautotrophic Micropropagation|journal=In Vitro Cellular & Developmental Biology|volume=27|issue=2|pages=47–51|doi=10.1007/BF02632127|pmid=}} 2. ^{{Cite journal|last=Xiao|first=Yulan|last2=Niu|first2=Genhua|last3=Kozai|first3=Toyoki|date=2010-10-23|title=Development and application of photoautotrophic micropropagation plant system|journal=Plant Cell, Tissue and Organ Culture (PCTOC)|language=en|volume=105|issue=2|pages=149–158|doi=10.1007/s11240-010-9863-9|issn=0167-6857}} 3. ^{{Cite journal|last=和宏|first=富士原|last2=豊樹|first2=古在|last3=一郎|first3=渡部|date=1987-01-01|title=植物組織培養器内環境の基礎的研究|url=https://www.jstage.jst.go.jp/article/agrmet1943/43/1/43_1_21/_article/-char/ja/|journal=農業気象|volume=43|issue=1|pages=21–30|doi=10.2480/agrmet.43.21}} 4. ^{{Cite web|url=https://scholar.google.com/scholar?q=Liao+F,Wang++2007+Response+to+sucrose+free+culture+Gerbera+jamesonii&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwjCz4mmuvDMAhVDoD4KHYm8B4wQgQMIGjAA|title=Liao F,Wang 2007 Response to sucrose free culture Gerbera jamesonii - Google Scholar|website=scholar.google.com|access-date=2016-05-23}} 5. ^{{Cite journal|last=Xiao|first=Yulan|last2=Zhang|first2=Yongtai|last3=Dang|first3=Kang|last4=Wang|first4=Dongshuang|date=2007-06-01|title=Growth and photosynthesis of Dendrobium candidum Wall. Ex Lindl. plantlets cultured photoautotrophically|url=https://www.researchgate.net/publication/285928633|journal=Propagation of Ornamental Plants|volume=7|issue=2|issn=1311-9109}} 6. ^{{Cite journal|last=Couceiro|first=M. A.|last2=Afreen|first2=F.|last3=Zobayed|first3=S. M. A.|last4=Kozai|first4=T.|date=2006-05-01|title=Enhanced growth and quality of St. John's wort (Hypericum perforatum l.) under photoautotrophic in vitro conditions|journal=In Vitro Cellular & Developmental Biology - Plant|language=en|volume=42|issue=3|pages=278–282|doi=10.1079/IVP2006752|issn=1054-5476}} 7. ^{{Cite journal|last=Zhang|first=Meijun|last2=Zhao|first2=Duanduan|last3=Ma|first3=Zengqiang|last4=Li|first4=Xuedong|last5=Xiao|first5=Yulan|date=2009-06-01|title=Growth and Photosynthetic Capability of Momordica grosvenori Plantlets Grown Photoautotrophically in Response to Light Intensity|url=http://hortsci.ashspublications.org/content/44/3/757|journal=HortScience|language=en|volume=44|issue=3|pages=757–763|issn=0018-5345}} 8. ^{{Cite journal|last=Lucchesini|first=M.|last2=Mensuali-Sodi|first2=A.|last3=Massai|first3=R.|last4=Gucci|first4=R.|date=2001-05-31|title=Development of Autotrophy and Tolerance to Acclimatization of Myrtus Communis Transplants Cultured In Vitro under Different Aeration|url=https://www.researchgate.net/publication/225895692|journal=Biologia Plantarum|volume=44|issue=2|pages=167–174|doi=10.1023/A:1010277403705|issn=0006-3134}} 9. ^{{Cite journal|last=Wafa|first=Sharifah Nurashikin|last2=Taha|first2=Rosna Mat|last3=Mohajer|first3=Sadegh|last4=Mahmad|first4=Noraini|last5=Abdul|first5=Bakrudeen Ali Ahmed|date=2016-01-18|title=Organogenesis and Ultrastructural Features ofIn VitroGrownCanna indicaL.|url=http://www.hindawi.com/journals/bmri/2016/2820454/|journal=BioMed Research International|language=en|volume=2016|pages=1–9|doi=10.1155/2016/2820454|issn=2314-6133|pmc=4739482|pmid=26885503}} 10. ^{{Cite journal|last=Martins|first=João Paulo Rodrigues|last2=Verdoodt|first2=Veerle|last3=Pasqual|first3=Moacir|last4=Proft|first4=Maurice De|date=2015-07-11|title=Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae)|journal=Plant Cell, Tissue and Organ Culture (PCTOC)|language=en|volume=123|issue=1|pages=121–132|doi=10.1007/s11240-015-0820-5|issn=0167-6857}} 11. ^{{Cite journal|last=Martins|first=João Paulo Rodrigues|last2=Schimildt|first2=Edilson Romais|last3=Alexandre|first3=Rodrigo Sobreira|last4=Falqueto|first4=Antelmo Ralph|last5=Otoni|first5=Wagner Campos|date=2015-07-22|title=Chlorophyll a fluorescence and growth of Neoregelia concentrica (Bromeliaceae) during acclimatization in response to light levels|journal=In Vitro Cellular & Developmental Biology - Plant|language=en|volume=51|issue=4|pages=471–481|doi=10.1007/s11627-015-9711-z|issn=1054-5476}} 12. ^{{Cite journal|last=Badr|first=Ashraf|last2=Angers|first2=Paul|last3=Desjardins|first3=Yves|date=2015-05-15|title=Comprehensive analysis of in vitro to ex vitro transition of tissue cultured potato plantlets grown with or without sucrose using metabolic profiling technique|journal=Plant Cell, Tissue and Organ Culture (PCTOC)|language=en|volume=122|issue=2|pages=491–508|doi=10.1007/s11240-015-0786-3|issn=0167-6857}} 13. ^{{Cite journal|last=Barrales-López|first=A.|last2=Robledo-Paz|first2=A.|last3=Trejo|first3=C.|last4=Espitia-Rangel|first4=E.|last5=O|first5=J. L. Rodríguez-De La|date=2015-02-20|title=Improved in vitro rooting and acclimatization of Capsicum chinense Jacq. plantlets|journal=In Vitro Cellular & Developmental Biology - Plant|language=en|volume=51|issue=3|pages=274–283|doi=10.1007/s11627-015-9671-3|issn=1054-5476}} 14. ^{{Cite journal|last=Aighewi|first=B. A.|last2=Asiedu|first2=R.|last3=Maroya|first3=N.|last4=Balogun|first4=M.|date=2015-07-02|title=Improved propagation methods to raise the productivity of yam (Dioscorea rotundata Poir.)|journal=Food Security|language=en|volume=7|issue=4|pages=823–834|doi=10.1007/s12571-015-0481-6|issn=1876-4517}} 15. ^{{Cite journal|last=Kaur|first=Ajinder|last2=Sandhu|first2=Jagdeep Singh|date=2014-09-02|title=High throughput in vitro micropropagation of sugarcane (Saccharum officinarum L.) from spindle leaf roll segments: Cost analysis for agri-business industry|journal=Plant Cell, Tissue and Organ Culture (PCTOC)|language=en|volume=120|issue=1|pages=339–350|doi=10.1007/s11240-014-0610-5|issn=0167-6857}} 16. ^{{Cite journal|last=Vasconcelos|first=Jaqueline Martins|last2=Saldanha|first2=Cleber Witt|last3=Dias|first3=Leonardo Lucas Carnevalli|last4=Maldaner|first4=Joseila|last5=Rêgo|first5=Mailson Monteiro|last6=Silva|first6=Luzimar Campos|last7=Otoni|first7=Wagner Campos|date=2014-11-06|title=In vitro propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen] as affected by carbon sources|journal=In Vitro Cellular & Developmental Biology - Plant|language=en|volume=50|issue=6|pages=746–751|doi=10.1007/s11627-014-9651-z|issn=1054-5476}} 17. ^{{Cite journal|last=Samosir|first=Yohannes M. S.|last2=Adkins|first2=Steve|date=2014-04-26|title=Improving acclimatization through the photoautotrophic culture of coconut (Cocos nucifera) seedlings: an in vitro system for the efficient exchange of germplasm|journal=In Vitro Cellular & Developmental Biology - Plant|language=en|volume=50|issue=4|pages=493–501|doi=10.1007/s11627-014-9599-z|issn=1054-5476}} 18. ^{{Cite journal|last=Paek|first=Cui Y.-Y. E.-J. Hahn T. Kozai and K.-Y.|date=2000-01-01|title=Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro.|url=https://www.researchgate.net/publication/260223787|journal=Plant Cell Tissue and Organ Culture|volume=62|issn=0167-6857}} 19. ^{{Cite journal|last=Wilson|first=Sandra B.|last2=Heo|first2=Jeongwook|last3=Kubota|first3=Chieri|last4=Kozai|first4=Toyoki|date=2001-01-01|title=A Forced Ventilation Micropropagation System for Photoautotrophic Production of Sweetpotato Plug Plantlets in a Scaled-up Culture Vessel: II. Carbohydrate Status|url=http://horttech.ashspublications.org/content/11/1/95|journal=HortTechnology|language=en|volume=11|issue=1|pages=95–99|issn=1063-0198}} 3 : Agronomy|Horticulture and gardening|Plant reproduction |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。