请输入您要查询的百科知识:

 

词条 Q-carbon
释义

  1. Discovery

  2. Production

  3. Properties

  4. See also

  5. References

{{Multiple issues|{{Original research|date=December 2015}}{{Expert needed|date=January 2017}}{{Advert | date = January 2019}}
}}{{UDP | date = January 2019}}{{Citation needed span|text=|date=November 2018|reason=}}

Q-carbon is an allotrope of carbon, discovered in 2015,[1] that is ferromagnetic, electrically conductive, and glows when exposed to low levels of energy.[1] It is relatively inexpensive to make, and some news reports claim that it has replaced diamond as the world's hardest substance.[2][3] As of 2018, only the discoverers themselves have reported successfully making Q-carbon.

According to researchers, Q-carbon exhibits a random amorphous structure that is a mix of 3-way (sp2) and 4-way (sp3) bonding, rather than the uniform sp3 bonding found in diamonds.[4][5] Carbon is melted using nanosecond laser pulses, then quenched rapidly to form Q-carbon, or a mixture of Q-carbon and diamond. Q-carbon can be made to take multiple forms, from nanoneedles to large-area diamond films. Researchers are also able to create nitrogen-vacancy (NV) nanodiamonds and organize them for a variety of potential applications, ranging from nanosensing and quantum computing to biomarkers.[6]

Discovery

The discovery of Q-carbon was announced in 2015[7] by a research group led by Jagdish Narayan, a professor of materials science and engineering at North Carolina State University, and graduate student Anagh Bhaumik.[2][8][9][10][11][12] Coupled with the discovery of Q-boron nitride (Q-BN), and the successful conversion of carbon into diamond and h-BN into c-BN[13] at ambient temperatures and air pressures, it was a major breakthrough in the science and technology of diamond and related materials.[14]

The process started with Narayan's papers on laser annealing, published in Science,[15] and culminated in 2015–16 with another series of papers[16] and three United States patent applications: 62/245,108 (2015); 62/202,202 (2015); and 62/331.217 (2016). These have been licensed by Q-Carbon, LLC to commercialize products based on Q-carbon,[17][18][19] diamond,[20] Q-BN and c-BN.[21][22][23][24]

Production

Typically, diamond is formed by heating carbon at very high temperatures (>5,000 K) and pressures (>120,000 atmospheres). However, Narayan and his group used kinetics and time control of pulsed nanosecond laser melting to overcome thermodynamic limitations and create a supercooled state that enables conversion of carbon into Q-carbon and diamond at ambient temperatures and pressures. The process uses a high-powered laser pulse, similar to that used in eye surgery, lasting approximately 200 nanoseconds. This raises the temperature of the carbon to approximately 4,000 K (3,700 °C; 6,700 °F) at atmospheric pressure. The resulting liquid is then quenched (rapidly cooled); it is this stage that is the source of the "Q" in the material's name. The degree of supercooling below the melting temperature determines the new phase of carbon, whether Q-carbon or diamond. Higher rates of cooling result in Q-carbon, whereas diamond tends to form when the free energy of the carbon liquid equals that of diamond.

Using this technique, diamond can be doped with both n- and p-type dopants, which is critical for high-power solid-state electronics. During rapid crystal growth from the melting, dopant concentrations can far exceed the thermodynamic solubility limit through a solute trapping phenomenon. This is necessary to achieve sufficiently high free carrier concentrations, since these dopants tend to be deep donors with high ionization energies.

It took researchers only 15 minutes to make one carat of Q-carbon. The initial research created Q-carbon from a thin plate of sapphire coated with amorphous (non-crystalline) carbon. Further studies have demonstrated that other substrates, such as glass or polymer, also work. This work was subsequently extended to convert h-BN into phase-pure c-BN.[25]

Properties

Q-carbon is non-crystalline, and while it has mixed sp2 and sp3 bonding, it is mostly sp3, which leads to its unique hardness [26] and its electrical, optical and magnetic properties. Q-carbon is harder than diamond by 10–20% because carbon is metallic in the molten state and gets closely packed, with a bond length smaller than that in diamond. Unlike all other known forms of carbon, Q-carbon is ferromagnetic, with a saturation magnetization of 20 emu/g and an estimated Curie temperature of approximately 500 K.[27][28]

Depending on the quenching rate from the supercooled state, Q-carbon can be a semiconductor or metallic. It glows more than diamond when exposed even to low levels of energetic radiation because of its stronger negative electron affinity.[29]

Boron-doped Q-Carbon exhibits BCS-type superconductivity at up to 57K .[30][31][32][33][19]

The Q-carbon and diamond discoveries, including the record high-temperature superconductivity, ferromagnetism and hardness higher than diamond, have been confirmed theoretically by Professor Marvin Cohen's group at the University of California, Berkeley, and Professor James Chelikowsky's group at the University of Texas, Austin.[34][35] These discoveries have been also confirmed experimentally by Professor Paul Chu and his research group at the Texas Center for Superconductivity at the University of Houston, and Professor Elisa Riedo's group at Georgia Tech and New York University.[36]

See also

  • Allotropes of carbon

References

1. ^{{Cite news|url=http://www.slashgear.com/researchers-create-diamond-at-room-temperature-30416392/|title=Researchers create diamond at room temperature|last=Roston|first=Brittany|date=Nov 30, 2015|work=|access-date=2015-12-08|via=}}
2. ^{{Cite news|url=https://www.nytimes.com/2015/12/03/science/q-carbon-harder-than-diamond.html|title=New Substance Is Harder Than Diamond, Scientists Say|last=Bromwich|first=Jonah|date=2015-12-03|newspaper=The New York Times|issn=0362-4331|access-date=2016-07-08}}
3. ^{{Cite web|url=http://www.cnn.com/2015/12/01/tech/super-diamond-q-carbon-scientists-laser/index.html|title=Q-carbon is harder, brighter than diamonds|last=CNN|first=Ben Brumfield|website=CNN|access-date=2016-07-08}}
4. ^{{Cite web|url=http://www.extremetech.com/extreme/219186-q-carbon-is-harder-than-diamond-incredibly-simple-to-make|title=Q-carbon is harder than diamond, incredibly simple to make {{!}} ExtremeTech|website=ExtremeTech|access-date=2016-07-08}}
5. ^{{Cite web|url=https://news.ncsu.edu/2015/11/narayan-q-carbon-2015/|title=Researchers Find New Phase of Carbon, Make Diamond at Room Temperature|website=news.ncsu.edu|access-date=2016-07-08}}
6. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|date=2016-11-02|title=Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures|journal=Materials Research Letters|language=en|volume=5|issue=4|pages=242–250|doi=10.1080/21663831.2016.1249805|issn=2166-3831}}
7. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|date=2015-12-07|title=Novel phase of carbon, ferromagnetism, and conversion into diamond|journal=Journal of Applied Physics|volume=118|issue=21|pages=215303|issn=0021-8979|bibcode=2015JAP...118u5303N|doi=10.1063/1.4936595}}
8. ^{{Cite news|url=http://www.csmonitor.com/Science/2015/1203/A-replacement-for-diamonds-Scientists-discover-Q-carbon|title=A replacement for diamonds? Scientists discover Q-carbon|last=Crowell|first=Maddy|date=2015-12-03|newspaper=Christian Science Monitor|issn=0882-7729|access-date=2016-07-08}}
9. ^{{Cite web|url=http://www.smithsonianmag.com/science-nature/weird-new-type-carbon-harder-brighter-than-diamond-180957433/?no-ist|title=Weird New Type of Carbon Is Harder (and Brighter) Than Diamond|last=Wei-Haas|first=Maya|access-date=2016-07-08}}
10. ^{{Cite web|url=https://www.forbes.com/sites/ericmack/2015/11/30/scientists-create-new-kind-of-diamond-at-room-temperature/|title=Scientists Create New Kind Of Diamond At Room Temperature|last=Mack|first=Eric|access-date=2016-07-08}}
11. ^{{Cite web|url=http://www.gizmag.com/q-carbon-new-phase-of-carbon/40668|title=Q-carbon: A new phase of carbon so hard it forms diamonds when melted|website=www.gizmag.com|access-date=2016-07-08}}
12. ^{{Cite web|url=http://phys.org/news/2015-11-phase-carbon-diamond-room-temperature.html|title=Researchers find new phase of carbon, make diamond at room temperature|access-date=2016-07-08}}
13. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|date=February 2016|title=Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air|journal=APL Materials|language=en|volume=4|issue=2|pages=020701|doi=10.1063/1.4941095|issn=2166-532X}}
14. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|last3=Gupta|first3=Siddharth|last4=Haque|first4=Ariful|last5=Sachan|first5=Ritesh|date=2018-04-06|title=Progress in Q-carbon and related materials with extraordinary properties|journal=Materials Research Letters|language=en|volume=6|issue=7|pages=353–364|doi=10.1080/21663831.2018.1458753|issn=2166-3831}}
15. ^Science 204, 461 (1979) and Science 252, 416 (1991).
16. ^APL Materials 3, 100702 (2015); APL Materials 4, 202701 (2016); J. Appl. Phys. 118, 215303 (2015); J. Appl. Phys. 119, 185302 (2016); Materials Res. Letters 2016; {{DOI|10.1080/21663931.2015.1126865}}{{Dead link|date=April 2018}}; Advanced Materials and Processes 174, 24 (2016).
17. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|date=2016-02-03|title=Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films|journal=Materials Research Letters|language=en|volume=4|issue=2|pages=118–126|doi=10.1080/21663831.2015.1126865|issn=2166-3831}}
18. ^{{Cite journal|last=Gupta|first=Siddharth|last2=Bhaumik|first2=Anagh|last3=Sachan|first3=Ritesh|last4=Narayan|first4=Jagdish|date=2018-01-03|title=Structural Evolution of Q-Carbon and Nanodiamonds|journal=JOM|language=en|volume=70|issue=4|pages=450–455|doi=10.1007/s11837-017-2714-y|issn=1047-4838}}
19. ^{{Cite journal|last=Gupta|first=Siddharth|last2=Sachan|first2=Ritesh|last3=Bhaumik|first3=Anagh|last4=Pant|first4=Punam|last5=Narayan|first5=Jagdish|date=June 2018|title=Undercooling driven growth of Q-carbon, diamond, and graphite|url=https://www.cambridge.org/core/journals/mrs-communications/article/undercooling-driven-growth-of-qcarbon-diamond-and-graphite/2485C3CA832C912600B9CFA29D05CF0F|journal=MRS Communications|language=en|volume=8|issue=2|pages=533–540|doi=10.1557/mrc.2018.76|issn=2159-6859}}
20. ^{{Cite journal|last=Bhaumik|first=Anagh|last2=Narayan|first2=Jagdish|date=2018-01-03|title=Synthesis and Characterization of Quenched and Crystalline Phases: Q-Carbon, Q-BN, Diamond and Phase-Pure c-BN|journal=JOM|language=en|volume=70|issue=4|pages=456–463|doi=10.1007/s11837-017-2712-0|issn=1047-4838}}
21. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|date=2016|title=Discovery of Q-BN and Direct Conversion of h-BN into c-BN and Formation of Epitaxial c-BN/Diamond Heterostructures|url=https://www.cambridge.org/core/journals/mrs-advances/article/discovery-of-qbn-and-direct-conversion-of-hbn-into-cbn-and-formation-of-epitaxial-cbndiamond-heterostructures/1AFD58131D9BC958A4B3305505734D5C|journal=MRS Advances|language=en|volume=1|issue=37|pages=2573–2584|doi=10.1557/adv.2016.472|issn=2059-8521}}
22. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|date=2016|title=Discovery of Q-BN and Direct Conversion of h-BN into c-BN and Formation of Epitaxial c-BN/Diamond Heterostructures|journal=MRS Advances|volume=1|issue=37|pages=2573–2584|doi=10.1557/adv.2016.472|issn=2059-8521}}
23. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Bhaumik|first2=Anagh|last3=Xu|first3=Weizong|date=2016-05-14|title=Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures|journal=Journal of Applied Physics|language=en|volume=119|issue=18|pages=185302|doi=10.1063/1.4948688|issn=0021-8979}}
24. ^{{Citation|last=Narayan|first=Jagdish|title=Fundamental Discovery of Q-Phases and Direct Conversion of Carbon into Diamond and h-BN into c-BN|date=2017|work=Mechanical and Creep Behavior of Advanced Materials|pages=219–228|publisher=Springer International Publishing|isbn=9783319510965|last2=Bhaumik|first2=Anagh|doi=10.1007/978-3-319-51097-2_17}}
25. ^APL Materials 4, 202701 (2016)
26. ^{{Cite journal|last=Gupta|first=Siddharth|last2=Sachan|first2=Ritesh|last3=Bhaumik|first3=Anagh|last4=Narayan|first4=Jagdish|date=2018|title=Enhanced mechanical properties of Q-carbon nanocomposites by nanosecond pulsed laser annealing|journal=Nanotechnology|volume=29|issue=45|pages=45LT02|language=en|doi=10.1088/1361-6528/aadd75|pmid=30156561|issn=1361-6528}}
27. ^{{Cite journal|last=Bhaumik|first=Anagh|last2=Nori|first2=Sudhakar|last3=Sachan|first3=Ritesh|last4=Gupta|first4=Siddharth|last5=Kumar|first5=Dhananjay|last6=Majumdar|first6=Alak Kumar|last7=Narayan|first7=Jagdish|date=2018-02-06|title=Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices|journal=ACS Applied Nano Materials|language=EN|volume=1|issue=2|pages=807–819|doi=10.1021/acsanm.7b00253|issn=2574-0970}}
28. ^{{Cite journal|last=Bhaumik|first=Anagh|last2=Narayan|first2=Jagdish|date=2018-05-28|title=Electrochromic effect in Q-carbon|journal=Applied Physics Letters|language=en|volume=112|issue=22|pages=223104|doi=10.1063/1.5023613|issn=0003-6951}}
29. ^{{Cite journal|last=Haque|first=Ariful|last2=Narayan|first2=Jagdish|date=June 2018|title=Electron field emission from Q-carbon|journal=Diamond and Related Materials|volume=86|pages=71–78|doi=10.1016/j.diamond.2018.04.008|issn=0925-9635}}
30. ^{{cite journal |first1= Anagh |last1= Bhaumik |first2= Ritesh |last2= Sachan |first3= Jagdish |last3= Narayan |title= A novel high-temperature carbon-based superconductor: B-doped Q-carbon |journal= Journal of Applied Physics |volume= 122 |issue= 4 |pages= 045301 |year= 2017 |doi= 10.1063/1.4994787 |bibcode= 2017JAP...122d5301B }}
31. ^{{Cite journal|last=Bhaumik|first=Anagh|last2=Sachan|first2=Ritesh|last3=Narayan|first3=Jagdish|date=2017-05-05|title=High-Temperature Superconductivity in Boron-Doped Q-Carbon|journal=ACS Nano|language=EN|volume=11|issue=6|pages=5351–5357|doi=10.1021/acsnano.7b01294|issn=1936-0851}}
32. ^{{Cite journal|last=Bhaumik|first=Anagh|last2=Sachan|first2=Ritesh|last3=Gupta|first3=Siddharth|last4=Narayan|first4=Jagdish|date=2017-11-10|title=Discovery of High-Temperature Superconductivity (Tc = 55 K) in B-Doped Q-Carbon|journal=ACS Nano|language=EN|volume=11|issue=12|pages=11915–11922|doi=10.1021/acsnano.7b06888|issn=1936-0851}}
33. ^{{Cite journal|last=Bhaumik|first=Anagh|last2=Sachan|first2=Ritesh|last3=Narayan|first3=Jagdish|date=2018|title=Magnetic relaxation and three-dimensional critical fluctuations in B-doped Q-carbon – a high-temperature superconductor|journal=Nanoscale|language=en|volume=10|issue=26|pages=12665–12673|doi=10.1039/c8nr03406k|pmid=29946612|issn=2040-3364}}
34. ^{{Cite journal|last=Sakai|first=Yuki|last2=Chelikowsky|first2=James R.|last3=Cohen|first3=Marvin L.|date=2018-02-01|title=Simulating the effect of boron doping in superconducting carbon|journal=Physical Review B|volume=97|issue=5|pages=054501|doi=10.1103/PhysRevB.97.054501|arxiv=1709.07125}}
35. ^{{Cite journal|last=Sakai|first=Yuki|last2=Chelikowsky|first2=James R.|last3=Cohen|first3=Marvin L.|date=2018-07-13|title=Magnetism in amorphous carbon|journal=Physical Review Materials|volume=2|issue=7|pages=074403|doi=10.1103/PhysRevMaterials.2.074403|arxiv=1803.11336}}
36. ^{{Cite journal|last=Narayan|first=Jagdish|last2=Gupta|first2=Siddharth|last3=Bhaumik|first3=Anagh|last4=Sachan|first4=Ritesh|last5=Cellini|first5=Filippo|last6=Riedo|first6=Elisa|date=2018|title=Q-carbon harder than diamond|url=https://www.cambridge.org/core/journals/mrs-communications/article/qcarbon-harder-than-diamond/6E04C214E517694B954B73B0B290EEC1|journal=MRS Communications|language=en|volume=8|issue=2|pages=428–436|doi=10.1557/mrc.2018.35|issn=2159-6859|via=}}
{{Allotropes of carbon}}

2 : Carbon forms|2015 in science

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/30 6:36:47