请输入您要查询的百科知识:

 

词条 Space-based measurements of carbon dioxide
释义

  1. Purposes and highlights of findings

  2. Challenges

  3. List of instruments

  4. References

Space-based measurements of carbon dioxide ({{CO2|link=yes}}) are used to help answer questions about Earth's carbon cycle. There are a variety of active and planned instruments for measuring carbon dioxide in Earth's atmosphere from space. The first satellite mission designed to measure {{CO2}} was the Interferometric Monitor for Greenhouse Gases (IMG) on board the ADEOS I satellite in 1996. This mission lasted less than a year. Since then, additional space-based measurements have begun, including those from two high-precision (better than 0.3% or 1 ppm) satellites (GOSAT and OCO-2). Different instrument designs may reflect different primary missions.

Purposes and highlights of findings

There are outstanding questions in carbon cycle science that satellite observations can help answer. The Earth system absorbs about half of all anthropogenic {{CO2}} emissions.[1] However, it is unclear exactly how this uptake is partitioned to different regions across the globe. It is also uncertain how different regions will behave in terms of {{CO2}} flux under a different climate. For example, a forest may increase {{CO2}} uptake due to the fertilization or β-effect,[2] or it could release {{CO2}} due to increased metabolism by microbes at higher temperatures.[3] These questions are difficult to answer with historically spatially and temporally limited data sets.

Even though satellite observations of {{CO2}} are somewhat recent, they have been used for a number of different purposes, some of which are highlighted here.

  • Megacity {{CO2}} enhancements were observed with the GOSAT satellite and minimum observable space-based changes in emissions were estimated.[4]
  • Satellite observations have been used for visualizing how {{CO2}} is distributed globally,[5] including studies that have focused on anthropogenic emissions.[6]
  • Flux estimates were made of {{CO2}} into and out of different regions.[7][8]
  • Correlations were observed between anomalous temperatures and {{CO2}} measurements in boreal regions.[9]
  • Zonal asymmetric patterns of {{CO2}} were used to observe fossil fuel signatures.[10]
  • Emission ratios with methane were measured from forest fires.[11]
  • {{CO2}} emission ratios with carbon monoxide (a marker of incomplete combustion) measured by the MOPITT instrument were analyzed over major urban regions across the globe to measure developing/developed status.[12]
  • OCO-2 observations were used to estimate {{CO2}} emissions from wildfires in Indonesia in 2015.[13]
  • OCO-2 observations were also used to estimate the excess land-ocean flux due to the 2014–16 El Niño event.[14][15]
  • GOSAT observations were used to attribute 2010-2011 El Niño Modoki on the Brazilian carbon balance.[16]

Challenges

Remote sensing of trace gases has several challenges. Most techniques rely on observing infrared light reflected off Earth's surface. Because these instruments use spectroscopy, at each sounding footprint a spectrum is recorded—this means there is a significantly (about 1000×) more data to transfer than what would be required of just an RGB pixel. Changes in surface albedo and viewing angles may affect measurements, and satellites may employ different viewing modes over different locations; these may be accounted for in the algorithms used to convert raw into final measurements. As with other space-based instruments, space debris must be avoided to prevent damage.

Water vapor can dilute other gases in air and thus change the amount of {{CO2}} in a column above the surface of the Earth, so often column-average dry-air mole fractions (X{{CO2}}) are reported instead. To calculate this, instruments may also measure O{{sub|2}}, which is diluted similarly to other gases, or the algorithms may account for water and surface pressure from other measurements.[17] Clouds may interfere with accurate measurements so platforms may include instruments to measure clouds. Because of measurement imperfections and errors in fitting signals to obtain X{{CO2}}, space-based observations may also be compared with ground-based observations such as those from the TCCON.[18]

List of instruments

Instrument/satellite Primary institution(s) Service dates Approximate usable
daily soundings
Approximate
sounding size
Public data Notes Refs
HIRS-2/TOVS (NOAA-10) NOAA (U.S.) July 1987–
June 1991}}
100 × 100 km}} {{No}} Measuring {{CO2}} was not an original mission goal [19]
IMG (ADEOS I) NASDA (Japan) 17 August 1996–
June 1997}}
50 8 × 8 km}} {{No}} FTS system [20]
SCIAMACHY (Envisat) ESA, IUP University of Bremen (Germany) 1 March 2002–
May 2012}}
5,000 30 × 60 km}}Yes[21]}} [22]
AIRS (Aqua) JPL (U.S.) 4 May 2002–
ongoing}}
18,000 90 × 90 km}}Yes[23]}} [24][25]
IASI (MetOp) CNES/EUMETSAT (ESA) 19 October 2006}}20-39 km diameter}}Yes (only a few days)[26] [27]
GOSAT JAXA (Japan) 23 January 2009–
ongoing}}
10,000 10.5 km diameter Yes[28] }} First dedicated high precision (<0.3%) mission, also measures CH4 [29][30]
OCO JPL (U.S.) 24 February 2009}} 100,000 1.3 × 2.2 km}}N/A}} Failed to reach orbit[31]
OCO-2 JPL (U.S.) 2 July 2014–
ongoing}}
100,000 1.3 × 2.2 km}}Yes[32]}} High precision (<0.3%) [33]
GHGSat-D (or Claire) GHGSat (Canada) 21 June 2016–
ongoing}}
~2–5 images,
10,000+ pixels each
12 × 12 km}},
{{nowrap|50 m resolution image}}
available to selected partners only}} CubeSat and imaging spectrometer [34]
TanSat (or CarbonSat) CAS (China) {{nowrap|21 December 2016–}}
ongoing}}
100,000 1 × 2 km}}Yes (L1B radiances)[35] [36][37]
GAS FTS aboard FY-3D CMA (China) {{nowrap|15 November 2017–}}
ongoing}}[38]
15,000 13 km diameter Instrument testing and validation phase [39][40]
GMI (GaoFen-5, (fr)) CAS (China) {{nowrap|8 May 2018–}}
ongoing}}[41]
10.3 km diameter Instrument testing and validation phase [42][43]
GOSAT-2 JAXA (Japan) {{nowrap|29 October 2018–}}
ongoing}}[44]
10,000+ 9.7 km diameter expected release in 2019 Will also measure CH4 and CO [45]
OCO-3 JPL (U.S.) expected {{nowrap>April 2019}}[46] 100,000 <4.5 × 4.5 km}} To be mounted on the ISS [47]
MicroCarb CNES (France) expected 2020 ~30,000 4.5 × 9 km}} Will likely also measure CH4 [48]
GOSAT-3 JAXA (Japan) expected 2022
GeoCARB University of Oklahoma (U.S.) expected 2023 ~800,000 3 × 6 km}} First {{CO2}}-observing geosynchronous satellite, will also measure CH4 and CO [49][50]

There have been other conceptual missions which have undergone initial evaluations but have not been chosen to become a part of space-based observing systems. These include:

  • Active Sensing of {{CO2}} Emissions over Nights, Days, and Seasons (ASCENDS) is a lidar-based mission[51]
  • Geostationary Fourier Transform Spectrometer (GeoFTS)[52]
  • Atmospheric Imaging Mission for Northern regions (AIM-North) would involve a constellation of two satellites focused on polar regions[53]

References

1. ^{{cite journal |title=Carbon cycle conundrums |journal=Proceedings of the National Academy of Sciences |last1=Schimel |first1=David |volume=104 |issue=47 |pages=18353–18354 |date=November 2007 |doi=10.1073/pnas.0709331104 |bibcode=2007PNAS..10418353S |pmc=2141782}}
2. ^{{cite journal |title=Effect of increasing CO2on the terrestrial carbon cycle |journal=Proceedings of the National Academy of Sciences |last1=Schimel |first1=David |last2=Stephens |first2=Britton B. |last3=Fisher |first3=Joshua B. |volume=112 |issue=2 |pages=436–441 |date=January 2015 |doi=10.1073/pnas.1407302112 |bibcode=2015PNAS..112..436S |pmc=4299228}}
3. ^{{cite journal |title=Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability |journal=Nature |last1=Cox |first1=Peter M. |last2=Pearson |first2=David |last3=Booth |first3=Ben B. |last4=Friedlingstein |first4=Pierre |last5=Huntingford |first5=Chris |last6=Jones |first6=Chris D. |last7=Luke |first7=Catherine M. |display-authors=3 |volume=494 |issue=7437 |pages=341–344 |date=February 2013 |doi=10.1038/nature11882 |bibcode=2013Natur.494..341C}}
4. ^{{cite journal |title=Space-based observations of megacity carbon dioxide |journal=Geophysical Research Letters |last1=Kort |first1=Eric A. |last2=Frankenberg |first2=Christian |last3=Miller |first3=Charles E. |last4=Oda |first4=Tom |display-authors=3 |volume=39 |issue=17 |date=September 2012 |at=L17806 |doi=10.1029/2012GL052738 |bibcode=2012GeoRL..3917806K}}
5. ^{{cite journal |title=Global {{CO2}} distributions over land from the Greenhouse Gases Observing Satellite (GOSAT) |journal=Geophysical Research Letters |last1=Hammerling |first1=Dorit M. |last2=Michalak |first2=Anna M. |last3=O'Dell |first3=Christopher |last4=Kawa |first4=S. Randolph |display-authors=3 |volume=39 |issue=8 |date=April 2012 |doi=10.1029/2012GL051203 |bibcode=2012GeoRL..39.8804H}}
6. ^{{cite journal |title=Direct space-based observations of anthropogenic {{CO2}} emission areas from OCO-2 |journal=Geophysical Research Letters |last1=Hakkarainen |first1=J. |last2=Ialongo |first2=I. |last3=Tamminen |first3=J. |volume=43 |issue=21 |date=November 2016 |pages=11,400–11,406 |doi=10.1002/2016GL070885 |bibcode=2016GeoRL..4311400H}}
7. ^{{cite journal |title=Global {{CO2}} fluxes estimated from GOSAT retrievals of total column {{CO2}} |journal=Atmospheric Chemistry and Physics |last1=Basu |first1=S. |last2=Guerlet |first2=S. |last3=Butz |first3=A. |last4=Houweling |first4=S. |last5=Hasekamp |first5=O. |last6=Aben |first6=I. |last7=Krummel |first7=P. |last8=Steele |first8=P. |last9=Langenfelds |first9=R. |last10=Torn |first10=M. |last11=Biraud |first11=S. |last12=Stephens |first12=B. |last13=Andrews |first13=A. |last14=Worthy |first14=D. |display-authors=3 |volume=13 |issue=17 |date=September 2013 |pages=8695–8717 |doi=10.5194/acp-13-8695-2013 |bibcode=2013ACP....13.8695B}}
8. ^{{cite journal |title=Inferring regional sources and sinks of atmospheric {{CO2}} from GOSAT X{{CO2}} data |journal=Atmospheric Chemistry and Physics |last1=Deng |first1=F. |last2=Jones |first2=D. B. A. |last3=Henze |first3=D. K. |last4=Bousserez |first4=N. |last5=Bowman |first5=K. W. |last6=Fisher |first6=J. B. |last7=Nassar |first7=R. |last8=O'Dell |first8=C. |last9=Wunch |first9=D. |last10=Wennberg |first10=P. O. |last11=Kort |first11=E. A. |last12=Wofsy |first12=S. C. |last13=Blumenstock |first13=T. |last14=Deutscher |first14=N. M. |last15=Griffith |first15=D. W. T. |last16=Hase |first16=F. |last17=Heikkinen |first17=P. |last18=Sherlock |first18=V. |last19=Strong |first19=K. |last20=Sussmann |first20=R. |last21=Warneke |first21=T. |display-authors=3 |volume=14 |issue=7 |date=April 2014 |pages=3703–3727 |doi=10.5194/acp-14-3703-2014 |bibcode=2014ACP....14.3703D}}
9. ^{{cite journal |title=The covariation of Northern Hemisphere summertime {{CO2}} with surface temperature in boreal regions |journal=Atmospheric Chemistry and Physics |last1=Wunch |first1=D. |last2=Wennberg |first2=P. O. |last3=Messerschmidt |first3=J. |last4=Parazoo |first4=N. C. |last5=Toon |first5=G. C. |last6=Deutscher |first6=N. M. |last7=Keppel-Aleks |first7=G. |last8=Roehl |first8=C. M. |last9=Randerson |first9=J. T. |last10=Warneke |first10=T. |last11=Notholt |first11=J. |display-authors=3 |volume=13 |issue=18 |date=September 2013 |pages=9447–9459 |doi=10.5194/acp-13-9447-2013 |bibcode=2013ACP....13.9447W}}
10. ^{{cite journal |title=Towards constraints on fossil fuel emissions from total column carbon dioxide |journal=Atmospheric Chemistry and Physics |last1=Keppel-Aleks |first1=G. |last2=Wennberg |first2=P. O. |last3=O'Dell |first3=C. W. |last4=Wunch |first4=D. |display-authors=3 |volume=13 |issue=8 |date=April 2013 |pages=4349–4357 |doi=10.5194/acp-13-4349-2013 |bibcode=2013ACP....13.4349K}}
11. ^{{cite journal |title=First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes |journal=Geophysical Research Letters |last1=Ross |first1=Adrian N. |last2=Wooster |first2=Martin J. |last3=Boesch |first3=Hartmut |last4=Parker |first4=Robert |display-authors=3 |volume=40 |issue=15 |date=August 2013 |pages=4098–4102 |doi=10.1002/grl.50733 |bibcode=2013GeoRL..40.4098R}}
12. ^{{cite journal |title=Toward anthropogenic combustion emission constraints from space-based analysis of urban {{CO2}}/CO sensitivity |journal=Geophysical Research Letters |last1=Silva |first1=Sam J. |last2=Arellano |first2=Avelino F. |last3=Worden |first3=Helen M. |volume=40 |issue=18 |date=September 2013 |pages=4971–4976 |doi=10.1002/grl.50954 |bibcode=2013GeoRL..40.4971S}}
13. ^{{cite journal |title={{CO2}} emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric {{CO2}} concentrations |journal=Geophysical Research Letters |last1=Heymann |first1=J. |last2=Reuter |first2=M. |last3=Buchwitz |first3=M. |last4=Schneising |first4=O. |last5=Bovensmann |first5=H. |last6=Burrows |first6=J. P. |last7=Massart |first7=S. |last8=Kaiser |first8=J. W. |last9=Crisp |first9=D. |display-authors=1 |date=February 2017 |doi=10.1002/2016GL072042|bibcode=2017GeoRL..44.1537H }}
14. ^{{cite conference |url=https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/195912 |title=Orbiting Carbon Observatory (OCO-2) tracks increase of carbon release to the atmosphere during the 2014-2016 El Niño |conference=2016 AGU Fall Meeting. 12-16 December 2016. San Francisco, California. |first1=Prabir Kumar |last1=Patra |first2=David |last2=Crisp |first3=Johannes W. |last3=Kaiser |first4=Debra |last4=Wunch |first5=Tazu |last5=Saeki |first6=Kazuhito |last6=Ichii |first7=Takashi |last7=Sekiya |first8=Paul |last8=Wenneberg |first9=David W. T. |last9=Griffith |first10=Dietrich G. |last10=Feist |first11=Dave |last11=Pollard |first12=Voltaire A. |last12=Velazco |first13=Martine |last13=De Maziere |first14=Mahesh Kumar |last14=Sha |first15=Coleen Marie |last15=Roehl |first16=Abhishek |last16=Chatterjee |display-authors=1 |date=14 December 2016}}
15. ^{{cite journal |title=Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño |journal=Science |last1=Liu |first1=Junjie |last2=Bowman |first2=Kevin W. |last3=Schimel |first3=David S. |last4=Parazoo |first4=Nicolas C. |last5=Jiang |first5=Zhe |last6=Lee |first6=Meemong |last7=Bloom |first7=A. Anthony |last8=Wunch |first8=Debra |last9=Frankenberg |first9=Christian |last10=Sun |first10=Ying |last11=O’Dell |first11=Christopher W. |last12=Gurney |first12=Kevin R. |last13=Menemenlis |first13=Dimitris |last14=Gierach |first14=Michelle |last15=Crisp |first15=David |last16=Eldering |first16=Annmarie |display-authors=1 |volume=358 |issue=6360 |date=October 2017 |at=eaam5690 |doi=10.1126/science.aam5690 |pmid=29026011}}
16. ^{{Cite journal |title=Global and Brazilian Carbon Response to El Niño Modoki 2011-2010 |journal=Earth and Space Science |last=Bowman |first=K. W. |last2=Liu |first2=J. |last3=Bloom |first3=A. A. |last4=Parazoo |first4=N. C. |last5=Lee |first5=M. |last6=Jiang |first6=Z. |last7=Menemenlis |first7=D. |last8=Gierach |first8=M. M. |last9=Collatz |first9=G. J. |display-authors=1 |volume=4 |issue=10 |pages=637–660 |date=October 2017 |doi=10.1002/2016ea000204}}
17. ^{{cite journal |title=The Total Carbon Column Observing Network |journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |last1=Wunch |first1=D. |last2=Toon |first2=G. C. |last3=Blavier |first3=J.-F. L. |last4=Washenfelder |first4=R. A. |last5=Notholt |first5=J. |last6=Connor |first6=B. J. |last7=Griffith |first7=D. W. T. |last8=Sherlock |first8=V. |last9=Wennberg |first9=P. O. |display-authors=3 |volume=369 |issue=1943 |date=May 2011 |pages=2087–2112 |doi=10.1098/rsta.2010.0240 |bibcode=2011RSPTA.369.2087W}}
18. ^{{cite journal |title=Toward accurate {{CO2}} and CH4 observations from GOSAT |journal=Geophysical Research Letters |last1=Butz |first1=A. |last2=Guerlet |first2=S. |last3=Hasekamp |first3=O. |last4=Schepers |first4=D. |last5=Galli |first5=A. |last6=Aben |first6=I. |last7=Frankenberg |first7=C. |last8=Hartmann |first8=J.-M. |last9=Tran |first9=H. |last10=Kuze |first10=A. |last11=Keppel-Aleks |first11=G. |last12=Toon |first12=G. |last13=Wunch |first13=D. |last14=Wennberg |first14=P. |last15=Deutscher |first15=N. |last16=Griffith |first16=D. |last17=Macatangay |first17=R. |last18=Messerschmidt |first18=J. |last19=Notholt |first19=J. |last20=Warneke |first20=T. |display-authors=3 |volume=38 |issue=14 |at=L14812 |date=July 2011 |doi=10.1029/2011GL047888 |bibcode=2011GeoRL..3814812B}}
19. ^{{cite journal |title=First global measurement of midtropospheric {{CO2}} from NOAA polar satellites: Tropical zone |journal=Journal of Geophysical Research |first1=A. |last1=Chédin |first2=S. |last2=Serrar |first3=N. A. |last3=Scott |first4=C. |last4=Crevoisier |first5=R. |last5=Armante |display-authors=3 |volume=108 |issue=D18 |date=September 2003 |doi=10.1029/2003JD003439 |bibcode=2003JGRD..108.4581C}}
20. ^{{cite journal |title=Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation |journal=Applied Optics |last1=Kobayashi |first1=Hirokazu |last2=Shimota |first2=Akiro |last3=Kondo |first3=Kayoko |last4=Okumura |first4=Eisuke |last5=Kameda |first5=Yoshihiko |last6=Shimoda |first6=Haruhisa |last7=Ogawa |first7=Toshihiro |display-authors=3 |volume=38 |issue=33 |date=November 1999 |pages=6801-6807 |doi=10.1364/AO.38.006801 |bibcode=1999ApOpt..38.6801K}}
21. ^{{cite web |url=http://www.iup.uni-bremen.de/sciamachy/dataproducts/index.html |title=SCIAMACHY Data Products at IUP/IFE Bremen |publisher=IUP Bremen |access-date=28 January 2017}}
22. ^{{cite journal |title=Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models |journal=Atmospheric Chemistry and Physics |last1=Buchwitz |first1=M. |last2=de Beek |first2=R. |last3=Burrows |first3=J. P. |last4=Bovensmann |first4=H. |last5=Warneke |first5=T. |last6=Notholt |first6=J. |last7=Meirink |first7=J. F. |last8=Goede |first8=A. P. H. |last9=Bergamaschi |first9=P. |last10=Körner |first10=S. |last11=Heimann |first11=M. |last12=Schulz |first12=A. |display-authors=3 |volume=5 |issue=4 |date=March 2005 |pages=941–962 |doi=10.5194/acp-5-941-2005}}
23. ^{{cite web |url=https://disc.gsfc.nasa.gov/AIRS/documentation/v5_docs/v5_docs_list.shtml#CO2_Documents |title={{CO2}} Documents |work=AIRS Version 5 Documentation |publisher=NASA{{\\}}Goddard Space Flight Center |date=19 November 2015 |access-date=11 February 2017}}
24. ^{{cite journal |title=Retrieval of mid-tropospheric CO2 directly from AIRS measurements |journal=Proceedings of the SPIE |last1=Olsen |first1=Edward T. |last2=Chahine |first2=Moustafa T. |last3=Chen |first3=Luke L. |last4=Pagano |first4=Thomas S. |display-authors=3 |volume=6966 |date=April 2008 |at=696613 |doi=10.1117/12.777920 |bibcode=2008SPIE.6966E..13O}}
25. ^{{cite journal |title=Satellite remote sounding of mid-tropospheric {{CO2}} |journal=Geophysical Research Letters |last1=Chahine |first1=M. T. |last2=Chen |first2=Luke |last3=Dimotakis |first3=Paul |last4=Jiang |first4=Xun |last5=Li |first5=Qinbin |last6=Olsen |first6=Edward T. |last7=Pagano |first7=Thomas |last8=Randerson |first8=James |last9=Yung |first9=Yuk L. |display-authors=3 |volume=35 |issue=17 |at=L17807 |date=September 2008 |doi=10.1029/2008GL035022 |bibcode=2008GeoRL..3517807C}}
26. ^{{cite web |url=http://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi/ |title=IASI Sounding Products |publisher=National Oceanic and Atmospheric Administration |access-date=22 October 2017}}
27. ^{{cite journal |title=Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling |journal=Journal of Quantitative Spectroscopy and Radiative Transfer |last1=Liuzzia |first1=G. |last2=Masielloa |first2=G. |last3=Serioa |first3=C. |last4=Venafraa |first4=S. |last5=Camy-Peyret |first5=C. |display-authors=3 |volume=182 |date=October 2016 |doi=10.1016/j.jqsrt.2016.05.022 |bibcode=2016JQSRT.182..128L}}
28. ^{{cite web |url=https://data2.gosat.nies.go.jp/index_en.html |title=GOSAT Data Archive Service (GDAS) |publisher=National Institute for Environmental Studies |access-date=28 January 2017}}
29. ^{{cite journal |title=Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring |journal=Applied Optics |last1=Kuze |first1=Akihiko |last2=Suto |first2=Hiroshi |last3=Nakajima |first3=Masakatsu |last4=Hamazaki |first4=Takashi |display-authors=3 |volume=48 |issue=35 |date=December 2009 |at=6716 |doi=10.1364/AO.48.006716 |bibcode=2009ApOpt..48.6716K}}
30. ^{{cite journal |title=Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space |journal=Atmospheric Measurement Techniques |last1=Kuze |first1=Akihiko |last2=Suto |first2=Hiroshi |last3=Shiomi |first3=Kei |last4=Kawakami |first4=Shuji |last5=Tanaka |first5=Makoto |last6=Ueda |first6=Yoko |last7=Deguchi |first7=Akira |last8=Yoshida |first8=Jun |last9=Yamamoto |first9=Yoshifumi |last10=Kataoka |first10=Fumie |last11=Taylor |first11=Thomas E. |last12=Buijs |first12=Henry L. |display-authors=3 |volume=9 |issue=6 |date=June 2016 |pages=2445–2461 |doi=10.5194/amt-9-2445-2016 |bibcode=2016AMT.....9.2445K}}
31. ^{{cite paper |url=https://www.nasa.gov/pdf/369037main_OCOexecutivesummary_71609.pdf |title=Overview of the Orbiting Carbon Observatory (OCO) Mishap Investigation Results For Public Release |publisher=NASA |accessdate=5 November 2018}}
32. ^{{cite web |url=https://co2.jpl.nasa.gov/#mission=OCO-2 |title={{CO2}} Virtual Science Data Environment |publisher=NASA{{\\}}Jet Propulsion Laboratory |access-date=11 February 2017}}
33. ^{{cite journal |title=The Orbiting Carbon Observatory-2: First 18 months of science data products |journal=Atmospheric Measurement Techniques Discussions |last1=Eldering |first1=Annmarie |last2=O'Dell |first2=Chris W. |last3=Wennberg |first3=Paul O. |last4=Crisp |first4=David |last5=Gunson |first5=Michael R. |last6=Viatte |first6=Camille |last7=Avis |first7=Charles |last8=Braverman |first8=Amy |last9=Castano |first9=Rebecca |last10=Chang |first10=Albert |last11=Chapsky |first11=Lars |last12=Cheng |first12=Cecilia |last13=Connor |first13=Brian |last14=Dang |first14=Lan |last15=Doran |first15=Gary |last16=Fisher |first16=Brendan |last17=Frankenberg |first17=Christian |last18=Fu |first18=Dejian |last19=Granat |first19=Robert |last20=Hobbs |first20=Jonathan |last21=Lee |first21=Richard A. M. |last22=Mandrake |first22=Lukas |last23=McDuffie |first23=James |last24=Miller |first24=Charles E. |last25=Myers |first25=Vicky |last26=Natraj |first26=Vijay |last27=O'Brien |first27=Denis |last28=Osterman |first28=Gregory B. |last29=Oyafuso |first29=Fabiano |last30=Payne |first30=Vivienne H. |last31=Pollock |first31=Harold R. |last32=Polonsky |first32=Igor |last33=Roehl |first33=Coleen M. |last34=Rosenberg |first34=Robert |last35=Schwandner |first35=Florian |last36=Smyth |first36=Mike |last37=Tang |first37=Vivian |last38=Taylor |first38=Thomas E. |last39=To |first39=Cathy |last40=Wunch |first40=Debra |last41=Yoshimizu |first41=Jan |display-authors=3 |volume=10 |issue=2 |date=February 2017 |pages=549-563 |doi=10.5194/amt-10-549-2017 |bibcode=2017AMT....10..549E}}
34. ^{{cite web |url=http://www.ghgsat.com/ |title=GHGSat Global Emissions Monitoring |publisher=GHGSat |access-date=11 February 2017 |quote=}}
35. ^{{cite web |url=http://satellite.nsmc.org.cn/portalsite/Data/DataView.aspx?SatelliteType=2&SatelliteCode=TAN1 |title=FENGYUN Satellite Data Center |publisher=National Satellite Meteorological Center |access-date=27 October 2017}}
36. ^{{cite journal |title=A retrieval algorithm for TanSat X{{CO2}} observation: Retrieval experiments using GOSAT data |journal=Chinese Science Bulletin |last1=Liu |first1=Yi |last2=Yang |first2=DongXu |last3=Cai |first3=ZhaoNan |volume=58 |issue=13 |date=May 2013 |pages=1520–1523 |doi=10.1007/s11434-013-5680-y|bibcode=2013ChSBu..58.1520L }}
37. ^{{cite web |url=http://english.cas.cn/head/201612/t20161222_172788.shtml |title=China Launches Satellite to Monitor Global Carbon Emissions |publisher=Chinese Academy of Sciences |agency=Xinhua |first=Jia |last=Liu |date=22 December 2016 |access-date=11 February 2017}}
38. ^{{cite news |url=https://spaceflightnow.com/2017/11/14/chinese-weather-satellite-launched-into-polar-orbit/ |title=Chinese weather satellite launched into polar orbit |work=Spaceflight Now |last=Clark |first=Stephen |date=14 November 2017 |access-date=11 May 2018}}
39. ^{{cite web |url=https://www.wmo-sat.info/oscar/satellites/view/116 |title=Satellite: FY-3D |publisher=WMO Observing Systems Capability Analysis and Review Tool |access-date=22 October 2017}}
40. ^{{cite web |url=http://www.cma.gov.cn/en2014/news/News/201711/t20171115_456104.html |title=China successfully launched FY-3D polar orbiting meteorological satellite |publisher=China Meteorological Administration |access-date=16 November 2017}}
41. ^{{cite web |url=https://www.nasaspaceflight.com/2018/05/long-march-4c-lofts-gaofen-5/ |title=Chinese weather satellite launched into polar orbit |last=Barbosa |first=Rui |date=8 May 2018 |website=NASAspaceflight.com |publisher= |access-date=11 May 2018 |quote=}}
42. ^{{cite conference |url=http://ceos.org/document_management/Virtual_Constellations/ACC/Meetings/AC-VC-12/Day%201/5.%20Linagfu%20Chen%20-%20Gaofeng-5%201013.pdf |title=Mission Overview GaoFen-5 |conference=CEOS-ACC-12 meeting. 13-15 October 2016. Seoul, Korea. |last1=Chen |first1=Liangfu |year=2016}}
43. ^{{cite conference |url=https://geoss-ap-symposium9.org/_public/20170112/wg3/20170112_wg3_02-1.pdf |title={{CO2}} Monitoring from Space: TanSat and GF-5/GMI Mission Status |conference=The 9th GEOSS Asia-Pacific Symposium. 11-13 January 2017. Tokyo, Japan. |last1=Liu |first1=Yi |year=2017}}
44. ^{{cite web |url=http://global.jaxa.jp/press/2018/10/20181029_h2af40.html |title=Launch Results of the H-IIA F40 Encapsulating GOSAT-2 and KhalifaSat |publisher=Japan Aerospace Exploration Agency |date=29 October 2018 |access-date=5 November 2018}}
45. ^{{cite conference |url=https://www.omc.co.jp/iwggms12/pdf/Session_9/43_Tsuneo_Matsunaga.pdf |title=The Status of NIES GOSAT-2 Project and NIES Satellite Observation Center |conference=12th International Workshop on Greenhouse Gas Measurements from Space. 7-9 June 2016. Kyoto, Japan. |last1=Matsunaga |first1=T. |last2=Maksyutov |first2=S. |last3=Morino |first3=I. |last4=Yoshida |first4=Y. |last5=Saito |first5=M. |last6=Noda |first6=H. |last7=Terao |first7=T. |last8=Nishizawa |first8=T. |last9=Mukai |first9=H. |last10=Saigusa |first10=N. |last11=Machida |first11=T. |display-authors=3 |year=2016}}
46. ^{{cite web |url=https://www.jpl.nasa.gov/missions/orbiting-carbon-observatory-3-oco-3/ |title=Mission to Earth: Orbiting Carbon Observatory 3 |publisher=NASA/Jet Propulsion Laboratory |access-date=5 November 2018}}
47. ^{{cite paper |url=http://ceos.org/document_management/Virtual_Constellations/ACC/Meetings/AC-VC-12/Day%202/7.%20Worden%20-%20OCO-3.pdf |title=OCO-3 Science and Status for CEOS |publisher=Committee on Earth Observation Satellites |last1=Eldering |first1=Annmarie |last2=Worden |first2=John |date=October 2016}}
48. ^{{cite conference |url=https://www.omc.co.jp/iwggms12/pdf/Session_10/45_Francois_Buisson.pdf |title=An Introduction to MicroCarb, First European Program for {{CO2}} Monitoring |conference=12th International Workshop on Greenhouse Gas Measurements from Space. 7-9 June 2016. Kyoto, Japan. |last1=Buisson |first1=Francois |last2=Pradines |first2=Didier |last3=Pascal |first3=Veronique |last4=Jouglet |first4=Denis |display-authors=3 |date=9 June 2016}}
49. ^{{cite journal |title=Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations |journal=Atmospheric Measurement Techniques |last1=Polonsky |first1=I. N. |last2=O'Brien |first2=D. M. |last3=Kumer |first3=J. B. |last4=O'Dell |first4=C. W. |display-authors=3 |volume=7 |issue=4 |date=April 2014 |pages=959–981 |doi=10.5194/amt-7-959-2014 |bibcode=2014AMT.....7..959P}}
50. ^{{cite conference |url=http://iwggms13.fmi.fi/presentations/j08_s07_04_Moore.pdf |title=GeoCARB, Geostationary Carbon Observatory |conference=13th International Workshop on Greenhouse Gas Measurements from Space. 6-8 June 2017. Helsinki, Finland. |last1=Moore |first1=Berrien III |date=8 June 2017}}
51. ^{{cite journal |title=A regional {{CO2}} observing system simulation experiment for the ASCENDS satellite mission |journal=Atmospheric Chemistry and Physics |last1=Wang |first1=J. S. |last2=Kawa |first2=S. R. |last3=Eluszkiewicz |first3=J. |last4=Baker |first4=D. F. |last5=Mountain |first5=M. |last6=Henderson |first6=J. |last7=Nehrkorn |first7=T. |last8=Zaccheo |first8=T. S. |display-authors=3 |volume=14 |issue=23 |date=December 2014 |pages=12897–12914 |doi=10.5194/acp-14-12897-2014 |bibcode=2014ACP....1412897W}}
52. ^{{cite conference |title=The Geostationary Fourier Transform Spectrometer |conference=2012 IEEE Aerospace Conference. 3-10 March 2012. Big Sky, Montana. |last1=Key |first1=Richard |last2=Sander |first2=Stanley |last3=Eldering |first3=Annmarie |last4=Rider |first4=David |last5=Blavier |first5=Jean-Francois |last6=Bekker |first6=Dmitriy |last7=Wu |first7=Yen-Hung |last8=Manatt |first8=Ken |display-authors=3 |year=2012 |doi=10.1109/AERO.2012.6187164}}
53. ^{{cite web |url=http://aim-north.ca/ |title=AIM-North The Atmospheric Imaging Mission for Northern regions |website=AIM-North.ca |access-date=11 May 2018 |quote=}}
{{Use dmy dates|date=May 2018}}

3 : Satellite meteorology and remote sensing|Atmosphere of Earth|Carbon dioxide

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 8:33:44