请输入您要查询的百科知识:

 

词条 Steroidogenesis inhibitor
释义

  1. Types, examples, and uses

     Cholesterol synthesis inhibitors  Acetyl-CoA to lanosterol inhibitors  Lanosterol to cholesterol inhibitors  Steroid hormone synthesis inhibitors  Non-specific steroid hormone synthesis inhibitors  Corticosteroid-specific synthesis inhibitors  Sex steroid-specific synthesis inhibitors  Other steroid synthesis inhibitors 

  2. List of steroid metabolism modulators

  3. See also

  4. References

  5. External links

{{Infobox drug class
| Image =
| Alt =
| Caption =
| Width =
| Synonyms = Steroid biosynthesis inhibitor; Steroid synthesis inhibitor
| Use = Various
| ATC_prefix =
| Biological_target = Steroidogenic enzymes
| Chemical_class = Steroidal; Nonsteroidal
| Drugs.com =
| Consumer_Reports =
| medicinenet =
| rxlist =
| MeshID =
}}

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones.[1] They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids.[1][3] They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.[1]

Steroidogenesis inhibitors are analogous in effect and use to antigonadotropins (which specifically inhibit sex steroid production), but work via a different mechanism of action; whereas antigonadotropins suppress gonadal production of sex steroids by effecting negative feedback on and thereby suppressing the hypothalamic-pituitary-gonadal axis, steroidogenesis inhibitors directly inhibit the enzymatic biosynthesis of steroids.[1]

{{TOC limit|3}}

Types, examples, and uses

Cholesterol synthesis inhibitors

Acetyl-CoA to lanosterol inhibitors

  • HMG-CoA reductase (HMGCR) inhibitors, also known as statins, prevent the conversion of {{abbrlink|HMG-CoA|3-hydroxy-3-methylglutaryl-coenzyme A}} into mevalonic acid, a relatively early step in the biosynthesis of cholesterol from acetyl coenzyme A (acetyl-CoA), and thereby decrease cholesterol levels.[2] Examples of statins include atorvastatin, lovastatin, rosuvastatin, and simvastatin.[2] They are used in the treatment of hypercholesterolemia for the purpose of lowering the risk of atherosclerosis-related cardiovascular disease.[2]
  • Farnesyl pyrophosphate synthase (FPPS) inhibitors prevent the conversion of isopentenyl pyrophosphate (IPP) into farnesyl pyrophosphate (FPP), a mid-range step in the biosynthesis of cholesterol from acetyl-CoA, and thereby inhibit cholesterol production.[3][4] They notably do not significantly lower circulating levels of cholesterol however, and hence, unlike statins, are not suitable for the treatment of hypercholesterolemia.[5] The main examples of FPPS inhibitors are nitrogenous bisphosphonates such as alendronate, ibandronate, pamidronate, risedronate, and zoledronate, which are used in the treatment of osteoporosis.[3][4]
  • Other early-stage cholesterol synthesis inhibitors like colestolone.[6][7][8]

Lanosterol to cholesterol inhibitors

  • 7-Dehydrocholesterol reductase (7-DHCR) inhibitors such as AY-9944 and BM-15766 inhibit the production of cholesterol from 7-dehydrocholesterol, one of the last steps in cholesterol biosynthesis.[9][10] Loss-of-function mutations in the gene encoding 7-DHCR result in Smith–Lemli–Opitz syndrome (SLOS) and dramatic accumulation of 7-dehydrocholesterol.[9][10] 7-DHCR inhibitors produce symptoms in animals similar to those seen SLOS, and as such, like 24-DHCR inhibitors (see below), are probably too toxic to be used clinically.[9][10]
  • 24-Dehydrocholesterol reductase (24-DHCR) inhibitors such as azacosterol and triparanol inhibit the production of cholesterol from desmosterol, one of the last steps in cholesterol biosynthesis, and were formerly used to treat hypercholesterolemia, but were withdrawn from the market due to toxicity caused by accumulation of desmosterol in tissues.[11][12]

Steroid hormone synthesis inhibitors

Non-specific steroid hormone synthesis inhibitors

  • Cholesterol side-chain cleavage enzyme (P450scc, CYP11A1) inhibitors such as aminoglutethimide,[14] ketoconazole,[27] and mitotane[27] inhibit the production of pregnenolone from cholesterol and thereby prevent the synthesis of all steroid hormones.[15][14] They have been used to inhibit corticosteroid synthesis in the treatment of Cushing's syndrome and adrenocortical carcinoma,[16] and ketoconazole has also been used to inhibit androgen production in the treatment of prostate cancer.[14][17]
  • 3β-Hydroxysteroid dehydrogenase (3β-HSD) inhibitors such as amphenone B,[18] azastene, cyanoketone, epostane, mitotane,[27] and trilostane inhibit the conversion of Δ5-3β-hydroxysteroids into Δ4-3-ketosteroids and thereby inhibit the production of most of the steroid hormones.[19] Due to inhibition of progesterone biosynthesis, they have been investigated as contraceptives and abortifacients (though ultimately have never been marketed for this indication),[19] and trilostane was formerly used to inhibit corticosteroid synthesis in the treatment of Cushing's syndrome.[20]
  • 17α-Hydroxylase/17,20-lyase (CYP17A1) inhibitors such as abiraterone acetate, etomidate,[27] galeterone, ketoconazole,[27] and orteronel inhibit the production of androgens and glucocorticoids and are used to reduce androgen levels in the treatment of prostate cancer.[15][21] Selective 17,20-lyase inhibitors such as seviteronel inhibit only androgen production without affecting glucocorticoid synthesis and are under development for the treatment of prostate cancer.[22]

Corticosteroid-specific synthesis inhibitors

  • 21-Hydroxylase (CYP21A2) inhibitors prevent the production of corticosteroids from progesterone and 17α-hydroxyprogesterone.[15]
  • 11β-Hydroxylase (CYP11B1) inhibitors such as amphenone B,[18] etomidate,[27] ketoconazole,[27] metyrapone,[27] mitotane,[27] and osilodrostat[23] inhibit the production of the potent corticosteroids cortisol, corticosterone, and aldosterone from the less potent corticosteroids 11-deoxycorticosterone and 11-deoxycortisol and are used in the diagnosis and treatment of Cushing's syndrome.[15]
  • Aldosterone synthase (CYP11B2) inhibitors such as metyrapone,[24] mitotane,[25] and osilodrostat[23] prevent the production of the potent mineralocorticoid aldosterone from the less potent mineralocorticoid corticosterone.[15] Osilodrostat was investigated for the treatment of hypertension, heart failure, and renal disease, but development for these indications was discontinued.[23]

Sex steroid-specific synthesis inhibitors

  • 17β-Hydroxysteroid dehydrogenase (17β-HSD) inhibitors prevent the reversible conversion of the weak androgens dehydroepiandrosterone (DHEA) and 4-androstenedione into the more potent androgen testosterone and the weak estrogen estrone into the more potent estrogen estradiol.[26]
  • 5α-Reductase inhibitors (5-ARIs) such as finasteride, dutasteride, epristeride, and alfatradiol[27] prevent the conversion of testosterone into the more potent androgen dihydrotestosterone (DHT) and are used in the treatment of benign prostatic hyperplasia (BPH) and androgenic alopecia (pattern hair loss).[28] These drugs also inhibit the formation of neurosteroids such as allopregnanolone, tetrahydrodeoxycorticosterone (THDOC), and 3α-androstanediol from progesterone, 11-deoxycorticosterone, and DHT, respectively, which may contribute to side effects such as depression and sexual dysfunction.[29]
  • Aromatase inhibitors (AIs) such as aminoglutethimide, anastrozole, exemestane, letrozole, and testolactone inhibit the production of estrogens from androgens and are used mainly in the treatment of estrogen receptor-positive breast cancer.[30]
  • Steroid sulfotransferase (SST) inhibitors prevent the conversion of steroid hormones such as estrone and DHEA into hormonally inactive steroid sulfates.[31] Although hormonally inactive, some steroid sulfates, such as pregnenolone sulfate and DHEA sulfate, are important neurosteroids.[32][33]
  • Steroid sulfatase (STS) inhibitors such as estradiol sulfamate, estrone sulfamate, irosustat, and danazol[34] inhibit the conversion of steroid sulfates such as estrone sulfate and DHEA sulfate into their hormonally active forms.[35][36] They have potential applications in the treatment of breast cancer and endometriosis, and are currently under investigation for such indications.[35][36]

Other steroid synthesis inhibitors

  • Lanosterol 14α-demethylase (CYP51A1) inhibitors such as clotrimazole, fluconazole, itraconazole, ketoconazole, miconazole, and voriconazole prevent the production of ergosterol from lanosterol.[15][37] Ergosterol is absent in animals but is an essential component of the cell membranes of many fungi and protozoa, and so lanosterol 14α-demethylase inhibitors are used as antifungals and antiprotozoals in the treatment of infections.[37]

List of steroid metabolism modulators

Enzyme Substrates→Products Inhibitors Inducers
HMG-CoA reductase
(HMGCR)
HMG-CoA→Mevalonic acid Atorvastatin • Cerivastatin • Colestolone • Fluvastatin • Lovastatin • Mevastatin • Pitavastatin • Pravastatin • Rosuvastatin • Simvastatin
FPPS|Farnesyl pyrophosphate synthetase Dimethylallyl pyrophosphate (isoprenyl pyrophosphate)→Farnesyl pyrophosphate • Isopentenyl pyrophosphate→Farnesyl pyrophosphate Alendronic acid • Ibandronic acid • Incadronic acid • Pamidronic acid • Risedronic acid • Zoledronic acid
7-DHCR|7-Dehydrocholesterol reductase 7-Dehydrocholesterol→Cholesterol AY-9944 • BM-15766 • Triparanol
24-DHCR|24-Dehydrocholesterol reductase Desmosterol→Cholesterol Azacosterol • Clomifene • Triparanol • WY-3457
P450scc|Cholesterol side-chain cleavage enzyme
(CYP11A1)
Cholesterol→22R-Hydroxycholesterol • 22R-Hydroxycholesterol→20α,22R-Dihydroxycholesterol • 20α,22R-Dihydroxycholesterol→Pregnenolone 22-ABC • 3,3′-Dimethoxybenzidine • 3-Methoxybenzidine • Aminoglutethimide • Amphenone B • Canrenone • Cyanoketone • Danazol • Etomidate • Ketoconazole • Levoketoconazole • Mitotane • Spironolactone • Trilostane
3β-HSD|3β-Hydroxysteroid dehydrogenase
(HSD3B)
Pregnenolone→Progesterone • 17α-Hydroxypregnenolone→17α-Hydroxyprogesterone • Dehydroepiandrosterone→Androstenedione • 5-Androstenediol→Testosterone • Androstadienol→Androstadienone 4-MA • Δ4-Abiraterone • Abiraterone • Abiraterone acetate • Amphenone B • Azastene • Cyanoketone • Cyproterone acetate • Danazol • Epostane • Genistein • Gestrinone • Medrogestone • Medroxyprogesterone acetate • Metribolone • Metyrapone • Norethisterone • Oxymetholone • Pioglitazone • Rosiglitazone • Trilostane • Troglitazone
17α‑Hydroxylase,
17,20-lyase (CYP17A1)
Pregnenolone→17α-Hydroxypregnenolone • Progesterone→17α-Hydroxyprogesterone • 17α-Hydroxypregnenolone→Dehydroepiandrosterone • 17α-Hydroxyprogesterone→Androstenedione 22-ABC • 22-Oxime • Δ4-Abiraterone • Abiraterone • Abiraterone acetate • Amphenone B • Bifluranol • Bifonazole • Canrenone • CFG-920 • Clotrimazole • Cyanoketone • Cyproterone acetate • Danazol • Econazole • Etomidate • Flutamide • Galeterone • Gestrinone • Isoconazole • Ketoconazole • L-39 • Levoketoconazole • Liarozole • LY-207,320 • MDL-27,302 • Miconazole • Mifepristone • Nilutamide • Orteronel • Pioglitazone • Prochloraz • Rosiglitazone • Seviteronel • Spironolactone • Stanozolol • SU-9055 • SU-10603 • TGF-β • Tioconazole • Troglitazone • VN/87-1 • YM116
11β-HSD|11β-Hydroxysteroid dehydrogenase
(HSD11B)
Cortisol↔Cortisone 11-Ketoprogesterone • 11α-Hydroxyprogesterone • 11β-Hydroxyprogesterone • 18α-Glycyrrhizic acid • ABT-384 • Acetoxolone • Amphenone B • Carbenoxolone • Enoxolone (glycyrrhetinic acid) • Epigallocatechin gallate • Glycyrrhizin (glycyrrhizic acid) (licorice) • Progesterone
21-Hydroxylase
(CYP21A2)
Progesterone→11-Deoxycorticosterone • 17α-Hydroxyprogesterone→11-Deoxycortisol Aminoglutethimide • Amphenone B • Bifonazole • Canrenone • Clotrimazole • Diazepam • Econazole • Genistein • Isoconazole • Ketoconazole • Levoketoconazole • Metyrapone • Miconazole • Midazolam • Spironolactone • Abiraterone • Abiraterone acetate • Tioconazole
11β-Hydroxylase
(CYP11B1)
11-Deoxycorticosterone→Corticosterone • 11-Deoxycortisol→Cortisol Δ4-Abiraterone • Abiraterone • Abiraterone acetate • Aminoglutethimide • Canrenone • Etomidate • Fadrozole • FETO • Ketoconazole • Levoketoconazole • Metomidate • Metyrapol • Metyrapone • Mitotane • Potassium canrenoate • Spironolactone • Trilostane
Aldosterone
synthase (CYP11B2)
Corticosterone→Aldosterone 18-Ethynylprogesterone (18-ethinylprogesterone) • 18-Vinylprogesterone • Aminoglutethimide • Azelnidipine • Benidipine • Canrenone • Cilnidipine • Efonidipine • FAD286 • Fadrozole • Ketoconazole • Metyrapone • Mespirenone • Osilodrostat • Potassium canrenoate • Spironolactone
17β-HSD|17β-Hydroxysteroid dehydrogenase
(HSD17B)
Dehydroepiandrosterone↔5-Androstenediol • Androstenedione↔Testosterone • Estrone↔Estradiol Danazol • Ethanol • Fisetin • RM-532-105 • Simvastatin • STX-2171 • STX-2622 • STX-2624
5α‑Reductase
(SRD5A)
Cholestenone→5α-Cholestanone • Progesterone→5α-Dihydroprogesterone • 3α-Dihydroprogesterone→Allopregnanolone • 3β-Dihydroprogesterone→Isopregnanolone • Deoxycorticosterone→5α-Dihydrodeoxycorticosterone • Corticosterone→5α-Dihydrocorticosterone • Cortisol→5α-Dihydrocortisol • Aldosterone→5α-Dihydroaldosterone • Androstenedione→5α-Androstanedione • Testosterone→5α-Dihydrotestosterone • Androstadienone→Androstenone 22-Oxime • Δ4-Abiraterone • Abiraterone • Abiraterone acetate • Alfatradiol • Azelaic acid • β-Sitosterol • Bexlosteride • Chlormadinone acetate • Cl-4AS-1 • Dutasteride • Epitestosterone • Epristeride • Fatty acids (α-linolenic acid, linoleic acid, γ-linolenic acid, monolinolein, oleic acid) • Finasteride • Ganoderic acid • Gestodene • Izonsteride • L-39 • Lapisteride • Oxendolone • Saw palmetto extract • TFM-4AS-1 • Turosteride • Vitamin B6 • Zinc
3α-HSD|3α-Hydroxysteroid dehydrogenase
(AKR1C4)
5α-Dihydroprogesterone↔Allopregnanolone • DHDOC↔THDOC • Dihydrotestosterone↔3α-Androstanediol Coumestrol • Daidzein • Genistein • Indometacin • Medroxyprogesterone acetate Fluoxetine • Fluvoxamine • Mirtazapine • Paroxetine • Sertraline • Venlafaxine
Aromatase
(CYP19A1)
16α-Hydroxyandrostenedione→16α-Hydroxyestrone • Androstenedione→Estrone • Nandrolone→Estradiol • Metandienone→Methylestradiol • Methyltestosterone→Methylestradiol • Testosterone→Estradiol 4-AT • 4-Cyclohexylaniline • 4'-Hydroxynorendoxifen • 4-Hydroxytestosterone • 5α-DHNET • 20α-Dihydroprogesterone • Abyssinone II • alpha-Naphthoflavone • Aminoglutethimide • Anastrozole • Ascorbic acid (vitamin C) • Atamestane • ATD • Bifonazole • CGP-45,688 • CGS-47,645 • Chalconoids (e.g., isoliquiritigenin) • Clotrimazole • Corynesidone A • Coumestrol • DHT • Difeconazole • Econazole • Ellagitannins • Endosulfan • Exemestane • Fadrozole • Fatty acids (e.g., conjugated linoleic acid, linoleic acid, linolenic acid, palmitic acid) • Fenarimol • Finrozole • Flavonoids (e.g., 7-hydroxyflavone, 7-hydroxyflavanone, 7,8-DHF, acacetin, apigenin, baicalein, biochanin A, chrysin, EGCG, gossypetin, hesperetin, liquiritigenin, myricetin, naringenin, pinocembrin, rotenone, quercetin, sakuranetin, tectochrysin) • Formestane • Imazalil • Isoconazole • Ketoconazole • Leflutrozole • Letrozole • Liarozole • Melatonin • MEN-11066 • Miconazole • Minamestane • Nimorazole • NKS01 • Norendoxifen • ORG-33,201 • Penconazole • Phenytoin • PGE2 (dinoprostone) • Plomestane • Prochloraz • Propiconazole • Quinolinoids (e.g., berberine, casimiroin, triptoquinone A, XHN22, XHN26, XHN27) • Resorcylic acid lactones (e.g., zearalenone) • Rogletimide (pyridoglutethimide) • Stilbenoids (e.g., resveratrol) • Terpenoids (e.g., dehydroabietic acid, (–)-dehydrololiolide, retinol (vitamin A), Δ9-THC, tretinoin) • Testolactone • Tioconazole • Triadimefon • Triadimenol • Troglitazone • Valproic acid • Vorozole • Xanthones (e.g., garcinone D, garcinone E, α-mangostin, γ-mangostin, monodictyochrome A, monodictyochrome B) • YM-511 • Zinc Atrazine • Flavonoids (e.g., genistein, quercetin)
SST|Steroid sulfotransferase/{{abbrlink|EST|Estrogen sulfotransferase Dehydroepiandrosterone→Dehydroepiandrosterone sulfate • Estrone→Estrone sulfate 4′OH-CB79 • 6-Hydroxyflavone • 2,6-Dichloro-4-nitrophenol (DCNP) • 7,8-Dihydroxyflavone • Equol • Galangin • Genistein • Parabens (e.g., butylparaben) • Pentachlorophenol (PCP) • Triclosan
STS|Steroid sulfatase Cholesterol sulfate→Cholesterol • Dehydroepiandrosterone sulfate→Dehydroepiandrosterone • Estrone sulfate→Estrone • Pregnenolone sulfate→Pregnenolone AHBS • Danazol • Estradiol sulfamate (E2MATE) • Estrone sulfamate (EMATE) • Irosustat (STX64, 667 Coumate, BN-83495) • KW-2581 • SR-16157 • STX213 • STX681 • STX1938
Sterol
27-hydroxylase
(CYP27A1)
Cholesterol→27-Hydroxycholesterol Anastrozole • Bicalutamide • Dexmedetomidine • Fadrozole • Posaconazole • Ravuconazole
Cholesterol
7α-hydroxylase (CYP7A1)
Cholesterol→7α-Hydroxycholesterol (intermediate to bile acids) Ketoconazole • Levoketoconazole
Lanosterol
14α-demethylase (CYP51A1)
Lanosterol→4,4-Dimethylcholesta-8(9),14,24-trien-3β-ol (intermediate to ergosterol) Albaconazole • Aliconazole • Alteconazole • Arasertaconazole • Azaconazole • Azalanstat • Becliconazole • Bifonazole • Brolaconazole • Butoconazole • Chlormidazole • Cisconazole • Clotrimazole • Croconazole • Cyproconazole • Democonazole • Diniconazole • Doconazole • Eberconazole • Econazole • Econazole/triamcinolone • Efinaconazole • Embeconazole • Enilconazole • Etaconazole • Fenticonazole • Fluconazole • Flutrimazole • Fosfluconazole • Furconazole • Hexaconazole • Isavuconazole • Isavuconazonium chloride • Isavuconazonium sulfate • Isoconazole • Itraconazole • Ketoconazole • Lanoconazole • Levoketoconazole • Luliconazole • Miconazole • Neticonazole • Omoconazole • Orconazole • Oxiconazole • Parconazole • Penconazole • Posaconazole • Propiconazole • Pramiconazole • Quilseconazole • Ravuconazole • Saperconazole • Sertaconazole • Sulconazole • Tebuconazole • Terconazole (triaconazole) • Tioconazole • Uniconazole • Valconazole • Voriconazole • Zinoconazole • Zoficonazole

See also

  • Steroidogenic enzyme
  • Neurosteroidogenesis inhibitor

References

1. ^{{cite journal | vauthors = Vanden Bossche H | title = Inhibitors of P450-dependent steroid biosynthesis: from research to medical treatment | journal = J. Steroid Biochem. Mol. Biol. | volume = 43 | issue = 8 | pages = 1003–21 | year = 1992 | pmid = 22217845 | doi = 10.1016/0960-0760(92)90328-G | url = }}
2. ^{{cite book|author=Stephen E. Wolverton|title=Comprehensive Dermatologic Drug Therapy E-Book|url=https://books.google.com/books?id=Tqpsm5WKKlcC&pg=PA415|date=18 October 2012|publisher=Elsevier Health Sciences|isbn=1-4557-3801-8|pages=415–}}
3. ^{{cite book|author1=Frank J. Dowd|author2=Bart Johnson|author3=Angelo Mariotti|title=Pharmacology and Therapeutics for Dentistry - E-Book|url=https://books.google.com/books?id=6xT7DAAAQBAJ&pg=PA426|date=3 September 2016|publisher=Elsevier Health Sciences|isbn=978-0-323-44595-5|pages=426–}}
4. ^{{cite book|title=Nuclear Receptors in Development and Disease|url=https://books.google.com/books?id=ZvupDQAAQBAJ&pg=PA88|date=17 May 2017|publisher=Elsevier Science|isbn=978-0-12-802196-5|pages=88–}}
5. ^{{cite book|author1=Francesco Clementi|author2=Guido Fumagalli|title=General and Molecular Pharmacology: Principles of Drug Action|url=https://books.google.com/books?id=GsdJCgAAQBAJ&pg=PA442|date=9 February 2015|publisher=John Wiley & Sons|isbn=978-1-118-76857-0|pages=442–}}
6. ^https://www.google.com/patents/US5112815
7. ^{{cite journal | vauthors = Schroepfer GJ, Chu AJ, Needleman DH, Izumi A, Nguyen PT, Wang KS, Little JM, Sherrill BC, Kisic A | title = Inhibitors of sterol synthesis. Metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one after intravenous administration to bile duct-cannulated rats | journal = J. Biol. Chem. | volume = 263 | issue = 9 | pages = 4110–23 | year = 1988 | pmid = 3346239 | doi = | url = | issn = }}
8. ^{{cite journal | vauthors = Schroepfer GJ, Parish EJ, Kisic A, Jackson EM, Farley CM, Mott GE | title = 5 alpha-Cholest-8(14)-en-3 beta-ol-15-one, a potent inhibitor of sterol biosynthesis, lowers serum cholesterol and alters distributions of cholesterol in lipoproteins in baboons | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 79 | issue = 9 | pages = 3042–6 | year = 1982 | pmid = 6953447 | pmc = 346345 | doi = 10.1073/pnas.79.9.3042| url = }}
9. ^{{cite book|author1=E. Gilbert-Barness|author2=L.A. Barness|author3=P.M. Farrell|title=Metabolic Diseases: Foundations of Clinical Management, Genetics, and Pathology|url=https://books.google.com/books?id=YpfzDQAAQBAJ&pg=PA336|date=6 January 2017|publisher=IOS Press|isbn=978-1-61499-718-4|pages=336–337}}
10. ^{{cite book|author=Robert Bittman|title=Cholesterol: Its Functions and Metabolism in Biology and Medicine|url=https://books.google.com/books?id=MRfpBwAAQBAJ&pg=PA130|date=11 November 2013|publisher=Springer Science & Business Media|isbn=978-1-4615-5901-6|pages=130–}}
11. ^{{cite book|author=Peter M. Elias|title=Advances in Lipid Research: Skin Lipids|url=https://books.google.com/books?id=rTeaBQAAQBAJ&pg=PA218|date=21 January 2016|publisher=Elsevier|isbn=978-1-4832-1545-7|pages=218–}}
12. ^{{cite book|author1=Carl A. Burtis|author2=Edward R. Ashwood|author3=David E. Bruns|title=Tietz Textbook of Clinical Chemistry and Molecular Diagnostics - E-Book|url=https://books.google.com/books?id=BBLRUI4aHhkC&pg=PA733|date=14 October 2012|publisher=Elsevier Health Sciences|isbn=1-4557-5942-2|pages=733–}}
13. ^{{cite journal|last2=Richfield|first2=David|year=2014|title=Diagram of the pathways of human steroidogenesis|journal=WikiJournal of Medicine|volume=1|issue=1|doi=10.15347/wjm/2014.005|issn=2002-4436|last1=Häggström|first1=Mikael | name-list-format = vanc }}
14. ^{{cite book|author=Kenneth L. Becker|title=Principles and Practice of Endocrinology and Metabolism|url=https://books.google.com/books?id=FVfzRvaucq8C&pg=PA735|year=2001|publisher=Lippincott Williams & Wilkins|isbn=978-0-7817-1750-2|pages=735–}}
15. ^{{cite book|author=Paul R. Ortiz de Montellano|title=Cytochrome P450: Structure, Mechanism, and Biochemistry|url=https://books.google.com/books?id=abZnBwAAQBAJ&pg=PA851|date=13 March 2015|publisher=Springer|isbn=978-3-319-12108-6|pages=851–879}}
16. ^{{cite book|author1=Dimitrios A. Linos|author2=Jon A. van Heerden|title=Adrenal Glands: Diagnostic Aspects and Surgical Therapy|url=https://books.google.com/books?id=r8OLj1LLw3IC&pg=PA171|date=5 December 2005|publisher=Springer Science & Business Media|isbn=978-3-540-26861-1|pages=171–}}
17. ^{{cite book|author1=Waun Ki Hong|author2=American Association for Cancer Research|title=Holland-Frei Cancer Medicine 8|url=https://books.google.com/books?id=R0FbhLsWHBEC&pg=PA756|year=2010|publisher=PMPH-USA|isbn=978-1-60795-014-1|pages=756–}}
18. ^{{cite book|author=L Martini|title=Hormonal Steroids Biochemistry, Pharmacology, and Therapeutics: Proceedings of the First International Congress on Hormonal Steroids|url=https://books.google.com/books?id=wXCjz1JDTpUC&pg=PA383|date=2 December 2012|publisher=Elsevier|isbn=978-0-323-14465-0|pages=383–}}
19. ^{{cite journal | vauthors = Ray S, Sharma I | title = Development of progesterone antagonists as fertility regulating agents | journal = Pharmazie | volume = 42 | issue = 10 | pages = 656–61 | year = 1987 | pmid = 3325988 | doi = | url = }}
20. ^{{cite book|author=Marcello D. Bronstein|title=Cushing's Syndrome: Pathophysiology, Diagnosis and Treatment|url=https://books.google.com/books?id=5_ulQAM9OZYC&pg=PA157|date=1 October 2010|publisher=Springer Science & Business Media|isbn=978-1-60327-449-4|pages=157–}}
21. ^{{cite book|author1=William D. Figg|author2=Cindy H. Chau|author3=Eric J. Small|title=Drug Management of Prostate Cancer|url=https://books.google.com/books?id=4KDrjeWA5-UC&pg=PA96|date=14 September 2010|publisher=Springer Science & Business Media|isbn=978-1-60327-829-4|pages=96–98}}
22. ^{{cite book|author=Stephen Neidle|title=Cancer Drug Design and Discovery|url=https://books.google.com/books?id=HS6IAAAAQBAJ&pg=PA341|date=30 September 2013|publisher=Academic Press|isbn=978-0-12-397228-6|pages=341–}}
23. ^{{cite journal | vauthors = Fleseriu M, Castinetti F | title = Updates on the role of adrenal steroidogenesis inhibitors in Cushing's syndrome: a focus on novel therapies | journal = Pituitary | volume = 19 | issue = 6 | pages = 643–653 | year = 2016 | pmid = 27600150 | pmc = 5080363 | doi = 10.1007/s11102-016-0742-1 | url = }}
24. ^{{cite book|author=Jürg Müller|title=Regulation of Aldosterone Biosynthesis|url=https://books.google.com/books?id=14XFBAAAQBAJ&pg=PA39|date=6 December 2012|publisher=Springer Science & Business Media|isbn=978-3-642-96062-8|pages=39–}}
25. ^{{cite book|author1=J. Larry Jameson|author2=Leslie J. De Groot|title=Endocrinology - E-Book: Adult and Pediatric|url=https://books.google.com/books?id=W4dZ-URK8ZoC&pg=PA301|date=18 May 2010|publisher=Elsevier Health Sciences|isbn=1-4557-1126-8|pages=301–302}}
26. ^{{cite book|author1=Jerome F. Strauss|author2=Robert L. Barbieri|title=Yen & Jaffe's Reproductive Endocrinology E-Book: Physiology, Pathophysiology, and Clinical Management|url=https://books.google.com/books?id=TTCwAAAAQBAJ&pg=PA81|date=28 August 2013|publisher=Elsevier Health Sciences|isbn=978-1-4557-5972-9|pages=81–82}}
27. ^{{cite book|author=Ralph M. Trüeb|title=Female Alopecia: Guide to Successful Management|url=https://books.google.com/books?id=JfE_AAAAQBAJ&pg=PA79|date=26 February 2013|publisher=Springer Science & Business Media|isbn=978-3-642-35503-5|pages=79–}}
28. ^{{cite book|author=Rob Bradbury|title=Cancer|url=https://books.google.com/books?id=fdtDAAAAQBAJ&pg=PA46|date=30 January 2007|publisher=Springer Science & Business Media|isbn=978-3-540-33120-9|pages=46–50}}
29. ^{{cite journal|last1=Tvrdeić|first1=Ante|last2=Poljak|first2=Ljiljana|title=Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs?|journal=Endocrine Oncology and Metabolism|volume=2|issue=1|year=2016|pages=60–71|issn=1849-8922|doi=10.21040/eom/2016.2.7}}
30. ^{{cite book|author=Aman U. Buzdar|title=Endocrine Therapies in Breast Cancer|url=https://books.google.com/books?id=4aAH2Ik-9KcC&pg=PT45|date=8 November 2007|publisher=OUP Oxford|isbn=978-0-19-921814-1|pages=37–40}}
31. ^{{cite journal | vauthors = Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA | title = The Regulation of Steroid Action by Sulfation and Desulfation | journal = Endocr. Rev. | volume = 36 | issue = 5 | pages = 526–63 | year = 2015 | pmid = 26213785 | pmc = 4591525 | doi = 10.1210/er.2015-1036 | url = }}
32. ^{{cite journal | vauthors = Gibbs TT, Russek SJ, Farb DH | title = Sulfated steroids as endogenous neuromodulators | journal = Pharmacol. Biochem. Behav. | volume = 84 | issue = 4 | pages = 555–67 | year = 2006 | pmid = 17023038 | doi = 10.1016/j.pbb.2006.07.031 | url = }}
33. ^{{cite journal | vauthors = Prough RA, Clark BJ, Klinge CM | title = Novel mechanisms for DHEA action | journal = J. Mol. Endocrinol. | volume = 56 | issue = 3 | pages = R139–55 | year = 2016 | pmid = 26908835 | doi = 10.1530/JME-16-0013 | url = }}
34. ^{{cite journal | vauthors = Carlström K, Döberl A, Pousette A, Rannevik G, Wilking N | title = Inhibition of steroid sulfatase activity by danazol | journal = Acta Obstet Gynecol Scand Suppl | volume = 123 | issue = | pages = 107–11 | year = 1984 | pmid = 6238495 | doi = | url = }}
35. ^{{cite journal | vauthors = Sadozai H | title = Steroid sulfatase inhibitors: promising new therapy for breast cancer | journal = J Pak Med Assoc | volume = 63 | issue = 4 | pages = 509–15 | year = 2013 | pmid = 23905452 | doi = | url = }}
36. ^{{cite journal | vauthors = Thomas MP, Potter BV | title = Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential | journal = J. Steroid Biochem. Mol. Biol. | volume = 153 | issue = | pages = 160–9 | year = 2015 | pmid = 25843211 | doi = 10.1016/j.jsbmb.2015.03.012 | url = }}
37. ^{{cite book|author1=Tekoa L. King|author2=Mary C. Brucker|title=Pharmacology for Women's Health|url=https://books.google.com/books?id=E9qVyrNPsBkC&pg=PA292|date=25 October 2010|publisher=Jones & Bartlett Publishers|isbn=978-1-4496-5800-7|pages=292–}}

External links

  • {{Commonscatinline|Steroidogenesis inhibitors}}
{{Enzyme inhibition}}

1 : Steroidogenesis inhibitors

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/24 15:27:15