词条 | Aluminium gallium indium phosphide | ||||||||
释义 |
| ImageFile =File:AlGaInP Structure.PNG | ImageSize = | ImageAlt = | IUPACName = | OtherNames = | Section1 = {{Chembox Identifiers | CASNo = 163207-18-9 | PubChem = | SMILES = | Section2 = {{Chembox Properties | Formula = AlGaInP | MolarMass = | Appearance = | Density = | MeltingPt = | BoilingPt = | Solubility = |Section3={{Chembox Structure | CrystalStruct = Cubic | SpaceGroup = | Coordination = | LattConst_a = | LattConst_c = }}Aluminium gallium indium phosphide ({{Aluminum}}{{Gallium}}{{Indium}}{{Phosphorus}}, also AlInGaP, InGaAlP, GaInP, etc.) is a semiconductor material that provides a platform for the development of novel multi-junction photovoltaics and optoelectronic devices, as it spans a direct bandgap from deep ultraviolet to infrared.[1] AlGaInP is used in manufacture of light-emitting diodes of high-brightness red, orange, green, and yellow color, to form the heterostructure emitting light. It is also used to make diode lasers. FormationAlGaInP layer is often grown by heteroepitaxy on gallium arsenide or gallium phosphide in order to form a quantum well structure. Heteroepitaxy is a kind of epitaxy performed with materials that are different from each other. In heteroepitaxy, a crystalline film grows on a crystalline substrate or film of a different material. This technology is often used to grow crystalline films of materials for which single crystals cannot 1D View Another example of heteroepitaxy is gallium nitride (GaN) on sapphire[2] PropertiesAlGaInP is a semiconductor, which means that its valence band is completely full. The eV of the band gap between the valence band and the conduction band is small enough that it is able to emit visible light (1.7eV - 3.1eV). The band gap of AlGaInP is between 1.81eV and 2eV. This corresponds to red, orange, or yellow light, and that is why the LEDs made from AlGaInP are those colors.[1]
Zinc blende structureAlGaInP's structure is categorized within a specific unit cell called the Zinc blende Structure.[3] Zinc blende/sphalerite is based on a FCC lattice of anions. It has 4 asymmetric units in its unit cell. It is best thought of as a face-centered cubic array of anions and cations occupying one half of the tetrahedral holes. Each ion is 4-coordinate and has local tetrahedral geometry. Zinc blende is its own antitype—you can switch the anion and cation positions in the cell and it doesn't matter (as in NaCl). In fact, replacement of both the Zn and S with C gives the diamond structure![4] ApplicationsAlGaInP can be applied to:
AlGaInP laserA diode laser consists of a semiconductor material in which a p-n junction forms the active medium and optical feedback is typically provided by reflections at the device facets. AlGaInP diode lasers emit visible and near-infrared light with wavelengths of 0.63-0.76 µm.[5] The primary applications of AlGaInP diode lasers are in optical disc readers, laser pointers, and gas sensors, as well as for optical pumping, and machining.[1] LEDAlGaInP can be used as an LED. An LED is composed of a p-n junction which contain a p-type and an n-type. In this p-n junction, the p-type is AlGaIn, and the n-type is P. The material used in the semiconducting element of an LED determines its color.[6] AlGaInP is one of the two main types of LEDs presently used for lighting systems. The other is indium gallium nitride (InGaN) Slight changes in the composition of these alloys changes the color of the emitted light. AlGaInP alloys for red, orange and yellow LEDs InGaN alloys for green, blue and white LEDs Safety and toxicity aspectsThe toxicology of AlGaInP has not been fully investigated. The dust is an irritant to skin, eyes and lungs. The environment, health and safety aspects of aluminium indium gallium phosphide sources (such as trimethylgallium, trimethylindium and phosphine) and industrial hygiene monitoring studies of standard MOVPE sources have been reported recently in a review.[7] Illumination by a AlGaInP laser was associated in one study with slower healing of skin wounds in laboratory rats.[8] See also
References1. ^1 2 3 [https://www.ncbi.nlm.nih.gov/pubmed/19708798 SM, Rodrigo. "Result Filters." National Center for Biotechnology Information. U.S. National Library of Medicine, 27 Dec. 2009. Web. 03 Dec. 2015.]rk, 17 Apr. 2013. Web. 2. ^"Kinetics of Epitaxial Growth: Surface Diffusion and Nucleation. (n.d): 1-10 . Web. 3. ^{{Cite web |url=http://www.ee.sc.edu/classes/Fall12/elct566/Class_Notes/Status_and_Future_of_High_Power_LED_for_Solid_State_Lighting.pdf |title=Krames, Michael, R., Oleg B. Shcekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and George M Craford. "Status and Future of High-Power Light-Emitting." JOURNAL OF DISPLAY TECHNOLOGY Vol. 3.No. 2 (2007): 160. Department of Electrical Engineering. 20 July 2009. Web |access-date=2015-12-03 |archive-url=https://web.archive.org/web/20151208184715/http://www.ee.sc.edu/classes/Fall12/elct566/Class_Notes/Status_and_Future_of_High_Power_LED_for_Solid_State_Lighting.pdf |archive-date=2015-12-08 |dead-url=yes |df= }} 4. ^Toreki, Rob. "The Zinc Blende (ZnS) Structure." Structure World. N.p., 30 Mar. 2015. Web. 5. ^Chan, B. L.; Jutamulia, S. (2 December 2010). "Lasers in light skin interaction", Proc. SPIE 7851, Information Optics and Optical Data Storage, 78510O; doi: 10.1117/12.872732 6. ^[https://www.rpi.edu/magazine/winter2004/feature2-pg2.html "About LEDs." Rensselaer Magazine: Winter 2004: Looking Into Light. N.p., Dec. 2004. Web.] 7. ^Environment, health and safety issues for sources used in MOVPE growth of compound semiconductors; D V Shenai-Khatkhate, R Goyette, R L DiCarlo and G Dripps, Journal of Crystal Growth, vol. 1-4, pp. 816-821 (2004); {{doi|10.1016/j.jcrysgro.2004.09.007}} 8. ^[https://www.ncbi.nlm.nih.gov/pubmed/19708798 SM, Rodrigo. "Analysis of the systemic effect of red and infrared laser therapy on wound repair" National Center for Biotechnology Information. U.S. National Library of Medicine, 27 Dec. 2009. Web.]
7 : III-V semiconductors|Aluminium compounds|Gallium compounds|Indium compounds|Phosphides|III-V compounds|Light-emitting diode materials |
||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。