请输入您要查询的百科知识:

 

词条 Surface activated bonding
释义

  1. Overview

  2. Researches on SAB

  3. Technical Specifications

  4. References

Surface activated bonding (SAB) is a low temperature wafer bonding technology with atomically clean and activated surfaces. Surface activation prior to bonding by using fast atom bombardment is typically employed to clean the surfaces. High strength bonding of semiconductor, metal, and dielectric can be obtained even at room temperature.

Overview

In the standard SAB method, wafer surfaces are activated by argon fast atom bombardment in ultra-high vacuum (UHV) of 10−4–10−7 Pa. The bombardment removes adsorbed contaminants and native oxides on the surfaces. The activated surfaces are atomically clean and reactive for formation of direct bonds between wafers when they are brought into contact even at room temperature.

Researches on SAB

The SAB method has been studied for bonding of various materials, as shown in Table I.

Table I. Studies of standard SAB for various materials
SiGeGaAsSiCCuAl2O3SiO2
Si[1][2][1][4][2][3]
Ge[7]
GaAs[1][9]
SiC[4][9][12]
Cu[13][14]
Al2O3[2][3][2]
SiO2Failure[2]

The standard SAB, however, failed to bond some materials such as SiO2 and polymer films. The modified SAB was developed to solve this problem, by using a sputtering deposited Si intermediate layer to improve the bond strength.

Table II. Modified SAB with Si intermediate layer
Bonding intermediate layerReferences
SiO2-SiO2Sputtered Fe-Si on SiO2[4]
Polymer filmsSputtered Fe-Si on both sides[5][21][22]
Si-SiCSputtered Si on SiC[23]
Si-SiO2Sputtered Si on SiO2[6]

The combined SAB has been developed for SiO2-SiO2 and Cu/SiO2 hybrid bonding, without use of any intermediate layer.

Table III. Combined SAB using Si-containing Ar beam
Bond interfaceReferences
SiO2-SiO2Direct bond interface[25]
Cu-Cu, SiO2-SiO2, SiO2-SiNxdirect bond interface[26]

Technical Specifications

Materials
  • Semiconductor: Si-Si,[7][8] Ge-Ge,[9] GaAs-SiC,[10] SiC-SiC,[11] Si-SiC,[12][13] etc.
  • Metal: Al-Al, Cu-Cu,[14][15] etc.
  • Dielectric: Polymer films,[16][17] SiO2,[18][19] etc.
  • Cu/Dielectric Hybrid: Cu/SiO2 and Cu/SiO2/SiNx[20]
Advantages
  • Low process temperature: room temperature–200 °C
  • No concerns of thermal stress and damages
  • High bonding quality
  • Semiconductor and metal bonding interfaces without oxides
  • Completely dry process without wet chemical cleaning
  • Process compatibility to semiconductor technology
Drawbacks
  • High vacuum level (10−4–10−7 Pa)

References

1. ^J. Liang, T. Miyazaki, M. Morimoto, S. Nishida, N. Watanabe, and N. Shigekawa, “Electrical Properties of p-Si/n-GaAs Heterojunctions by Using Surface-Activated Bonding,” Appl. Phys. Express, vol. 6, no. 2, p. 021801, Feb. 2013. Available: http://dx.doi.org/10.7567/APEX.6.021801
2. ^H. Takagi, J. Utsumi, M. Takahashi, and R. Maeda, “Room-Temperature Bonding of Oxide Wafers by Ar-beam Surface Activation,” ECS Trans., vol. 16, no. 8, pp. 531–537, Oct. 2008. Available: http://dx.doi.org/10.1149/1.2982908
3. ^{{Cite journal|last=Ichikawa|first=Masatsugu|last2=Fujioka|first2=Akira|last3=Kosugi|first3=Takao|last4=Endo|first4=Shinya|last5=Sagawa|first5=Harunobu|last6=Tamaki|first6=Hiroto|last7=Mukai|first7=Takashi|last8=Uomoto|first8=Miyuki|last9=Shimatsu|first9=Takehito|title=High-output-power deep ultraviolet light-emitting diode assembly using direct bonding|url=http://stacks.iop.org/1882-0786/9/i=7/a=072101?key=crossref.ca50263240afad67c5fee43a3030968a|journal=Applied Physics Express|volume=9|issue=7|pages=072101|doi=10.7567/apex.9.072101|year=2016}}
4. ^R. Kondou and T. Suga, “Room temperature SiO2 wafer bonding by adhesion layer method,” presented at the Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011, pp. 2165–2170. Available: http://dx.doi.org/10.1109/ECTC.2011.5898819
5. ^T. Matsumae, M. Fujino, and T. Suga, “Room-temperature bonding method for polymer substrate of flexible electronics by surface activation using nano-adhesion layers,” Japanese Journal of Applied Physics, vol. 54, no. 10, p. 101602, Oct. 2015. Available: http://dx.doi.org/10.7567/JJAP.54.101602
6. ^K. Tsuchiyama, K. Yamane, H. Sekiguchi, H. Okada, and A. Wakahara, “Fabrication of Si/SiO2/GaN structure by surface-activated bonding for monolithic integration of optoelectronic devices,” Japanese Journal of Applied Physics, vol. 55, no. 5S, p. 05FL01, May 2016. Available: http://dx.doi.org/10.7567/JJAP.55.05FL01
7. ^{{Cite journal|last=Takagi|first=H.|last2=Kikuchi|first2=K.|last3=Maeda|first3=R.|last4=Chung|first4=T. R.|last5=Suga|first5=T.|date=1996-04-15|title=Surface activated bonding of silicon wafers at room temperature|journal=Applied Physics Letters|volume=68|issue=16|pages=2222–2224|doi=10.1063/1.115865|issn=0003-6951}}
8. ^{{Cite journal|last=Wang|first=Chenxi|last2=Suga|first2=Tadatomo|date=2011-05-01|title=Room-Temperature Direct Bonding Using Fluorine Containing Plasma Activation|url=http://jes.ecsdl.org/content/158/5/H525|journal=Journal of the Electrochemical Society|language=en|volume=158|issue=5|pages=H525–H529|doi=10.1149/1.3560510|issn=0013-4651}}
9. ^{{Cite journal|last=Higurashi|first=Eiji|last2=Sasaki|first2=Yuta|last3=Kurayama|first3=Ryuji|last4=Suga|first4=Tadatomo|last5=Doi|first5=Yasuo|last6=Sawayama|first6=Yoshihiro|last7=Hosako|first7=Iwao|date=2015-03-01|title=Room-temperature direct bonding of germanium wafers by surface-activated bonding method|url=http://stacks.iop.org/1347-4065/54/i=3/a=030213?key=crossref.cf678f0cde44b75c08ccb313720aef33|journal=Japanese Journal of Applied Physics|language=en|volume=54|issue=3|pages=030213|doi=10.7567/jjap.54.030213}}
10. ^{{Cite journal|last=Higurashi|first=Eiji|last2=Okumura|first2=Ken|last3=Nakasuji|first3=Kaori|last4=Suga|first4=Tadatomo|date=2015-03-01|title=Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers|url=http://stacks.iop.org/1347-4065/54/i=3/a=030207?key=crossref.7573526c9e02b5602fd19e7c46f61227|journal=Japanese Journal of Applied Physics|language=en|volume=54|issue=3|pages=030207|doi=10.7567/jjap.54.030207}}
11. ^{{cite journal|last1=Mu|first1=F.|last2=Iguchi|first2=K.|last3=Nakazawa|first3=H.|last4=Takahashi|first4=Y.|last5=Fujino|first5=M.|last6=Suga|first6=T.|title=Direct Wafer Bonding of SiC-SiC by SAB for Monolithic Integration of SiC MEMS and Electronics|journal=ECS Journal of Solid State Science and Technology|date=30 June 2016|volume=5|issue=9|pages=P451–P456|doi=10.1149/2.0011609jss}}
12. ^{{Cite journal|last=Liang|first=J.|last2=Nishida|first2=S.|last3=Arai|first3=M.|last4=Shigekawa|first4=N.|date=2014-04-21|title=Effects of thermal annealing process on the electrical properties of p+-Si/n-SiC heterojunctions|journal=Applied Physics Letters|volume=104|issue=16|pages=161604|doi=10.1063/1.4873113|issn=0003-6951}}
13. ^{{Cite journal|last=Mu|first=Fengwen|last2=Iguchi|first2=Kenichi|last3=Nakazawa|first3=Haruo|last4=Takahashi|first4=Yoshikazu|last5=Fujino|first5=Masahisa|last6=Suga|first6=Tadatomo|date=2016-04-01|title=Room-temperature wafer bonding of SiC–Si by modified surface activated bonding with sputtered Si nanolayer|url=http://stacks.iop.org/1347-4065/55/i=4S/a=04EC09?key=crossref.421afae530ffe190d92bae8aa74195c2|journal=Japanese Journal of Applied Physics|language=en|volume=55|issue=4S|pages=04EC09|doi=10.7567/jjap.55.04ec09}}
14. ^{{Cite journal|last=Kim|first=T. H.|last2=Howlader|first2=M. M. R.|last3=Itoh|first3=T.|last4=Suga|first4=T.|date=2003-03-01|title=Room temperature Cu–Cu direct bonding using surface activated bonding method|journal=Journal of Vacuum Science & Technology A|volume=21|issue=2|pages=449–453|doi=10.1116/1.1537716|issn=0734-2101}}
15. ^{{Cite journal|last=Shigetou|first=A.|last2=Itoh|first2=T.|last3=Matsuo|first3=M.|last4=Hayasaka|first4=N.|last5=Okumura|first5=K.|last6=Suga|first6=T.|date=2006-05-01|title=Bumpless interconnect through ultrafine Cu electrodes by means of surface-activated bonding (SAB) method|url=http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1629163|journal=IEEE Transactions on Advanced Packaging|volume=29|issue=2|pages=218–226|doi=10.1109/TADVP.2006.873138|issn=1521-3323}}
16. ^{{Cite journal|last=Matsumae|first=Takashi|last2=Nakano|first2=Masashi|last3=Matsumoto|first3=Yoshiie|last4=Suga|first4=Tadatomo|date=2013-03-15|title=Room Temperature Bonding of Polymer to Glass Wafers Using Surface Activated Bonding (SAB) Method|url=http://ecst.ecsdl.org/content/50/7/297|journal=ECS Transactions|language=en|volume=50|issue=7|pages=297–302|doi=10.1149/05007.0297ecst|issn=1938-6737}}
17. ^{{Cite journal|last=Takeuchi|first=K.|last2=Fujino|first2=M.|last3=Suga|first3=T.|last4=Koizumi|first4=M.|last5=Someya|first5=T.|date=2015-05-01|title=Room temperature direct bonding and debonding of polymer film on glass wafer for fabrication of flexible electronic devices|url=http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7159668|journal=Electronic Components and Technology Conference (ECTC) , 2015 IEEE 65th|pages=700–704|doi=10.1109/ECTC.2015.7159668|isbn=978-1-4799-8609-5}}
18. ^{{Cite journal|last=He|first=Ran|last2=Fujino|first2=Masahisa|last3=Yamauchi|first3=Akira|last4=Suga|first4=Tadatomo|date=2016-04-01|title=Combined surface-activated bonding technique for low-temperature hydrophilic direct wafer bonding|url=http://stacks.iop.org/1347-4065/55/i=4S/a=04EC02?key=crossref.b1c3f39d005b8c4f60e751463f30d378|journal=Japanese Journal of Applied Physics|language=en|volume=55|issue=4S|pages=04EC02|doi=10.7567/jjap.55.04ec02}}
19. ^{{Cite journal|last=He|first=Ran|last2=Fujino|first2=Masahisa|last3=Yamauchi|first3=Akira|last4=Suga|first4=Tadatomo|date=2015-03-01|title=Novel hydrophilic SiO2 wafer bonding using combined surface-activated bonding technique|url=http://stacks.iop.org/1347-4065/54/i=3/a=030218?key=crossref.092501efc665521c37b3051b1e4380ae|journal=Japanese Journal of Applied Physics|language=en|volume=54|issue=3|pages=030218|doi=10.7567/jjap.54.030218}}
20. ^{{Cite journal|last=He|first=Ran|last2=Fujino|first2=Masahisa|last3=Yamauchi|first3=Akira|last4=Wang|first4=Yinghui|last5=Suga|first5=Tadatomo|date=2016-01-01|title=Combined Surface Activated Bonding Technique for Low-Temperature Cu/Dielectric Hybrid Bonding|url=http://jss.ecsdl.org/content/5/7/P419|journal=ECS Journal of Solid State Science and Technology|language=en|volume=5|issue=7|pages=P419–P424|doi=10.1149/2.0201607jss|issn=2162-8769}}
{{Wafer bonding}}

6 : Wafer bonding|Semiconductor technology|Electronics manufacturing|Packaging (microfabrication)|Semiconductor device fabrication|Microelectronic and microelectromechanical systems

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 7:27:53