请输入您要查询的百科知识:

 

词条 Targeted alpha-particle therapy
释义

  1. Advantages of alpha emitters

  2. Production

  3. Applications

     Immunotherapy  Peritoneal carcinomas  Bone metastases  Leukaemia  Melanomas  Solid tumours 

  4. See also

  5. References

Targeted alpha-particle therapy (or TAT) is an in-development method of targeted radionuclide therapy of various cancers. It employs radioactive substances which undergo alpha decay to treat diseased tissue at close proximity.[1] It has the potential to provide highly targeted treatment, especially to microscopic tumour cells. Targets include leukemias, lymphomas, gliomas, melanoma, and peritoneal carcinomatosis.[2] As in diagnostic nuclear medicine, appropriate radionuclides can be chemically bound to a targeting biomolecule which carries the combined radiopharmaceutical to a specific treatment point.[3]

It has been said that "α-emitters are indispensable with regard to optimisation of strategies for tumour therapy".[4]

Advantages of alpha emitters

The primary advantage of alpha particle (α) emitters over other types of radioactive sources is their very high linear energy transfer (LET) and relative biological effectiveness (RBE).[5] Beta particle (β) emitters such as Yttrium-90 can travel considerable distances beyond the immediate tissue before depositing their energy, while alpha particles deposit their energy in 70–100 μm long tracks.[6]

Alpha particles are more likely than other types of radiation to cause double-strand breaks to DNA molecules, which is one of several effective causes of cell death.[7][8]

Production

Some α emitting isotopes such as 225Ac and 213Bi are only available in limited quantities from 229Th decay, although cyclotron production is feasible.[9][10][11]

The ARRONAX cyclotron can produce 211At by irradiation of 209Bi.[12][9]

Applications

Though many α-emitters exist, useful isotopes would have a sufficient energy to cause damage to cancer cells, and a half-life that is long enough to provide a therapeutic dose without remaining long enough to damage healthy tissue.

Immunotherapy

Several radionuclides have been studied for use in immunotherapy. Though β-emitters are more popular, in part due to their availability, trials have taken place involving 225Ac, 211At, 212Pb and 213Bi.[9]

Peritoneal carcinomas

Treatment of peritoneal carcinomas has promising early results limited by availability of α-emitters compared to β-emitters.[4]

Bone metastases

223Ra was the first α-emitter approved by the FDA in the United States for treatment of bone metastases from prostate cancer, and is a recommended treatment in the UK by NICE.[3][13] In a phase III trial comparing 223Ra to a placebo, survival was significantly improved.[14]

Leukaemia

Early trials of 225Ac and 213Bi have shown evidence of anti-tumour activity in Leukaemia patients.[15]

Melanomas

Phase I trials on melanomas have shown 213Bi is effective in causing tumour regression.[16][17]

Solid tumours

The short path length of alpha particles in tissue, which makes them well suited to treatment of the above types of disease, is a negative when it comes to treatment of larger bodies of solid tumour by intravenous injection.[18][19] However, potential methods to solve this problem of delivery exist, such as direct intratumoral injection[20] and anti-angiogenic drugs.[21][3]

See also

  • Selective internal radiation therapy

References

1. ^{{Cite book |url=http://www.nap.edu/catalog/11985.html |title=Advancing nuclear medicine through innovation |last=Committee on State of the Science of Nuclear Medicine |last2=National Research Council |last3=Division on Earth and Life Studies |last4=Institute of Medicine |last5=Nuclear and Radiation Studies Board |last6= Board on Health Sciences Policy |date=2007 |publisher=National Academies Press |isbn=978-0-309-11067-9 |location=Washington, D.C. |publication-date=2007 |chapter=Targeted Radionuclide Therapy |doi=10.17226/11985 |chapter-url=https://www.ncbi.nlm.nih.gov/books/NBK11464/}}
2. ^{{cite journal|last1=Mulford|first1=DA|last2=Scheinberg|first2=DA|last3=Jurcic|first3=JG|title=The promise of targeted {alpha}-particle therapy.|journal=Journal of Nuclear Medicine |date=January 2005|volume=46 Suppl 1|pages=199S–204S|pmid=15653670|url=http://jnm.snmjournals.org/content/46/1_suppl/199S.long}}
3. ^{{cite journal|last1=Dekempeneer|first1=Yana|last2=Keyaerts|first2=Marleen|last3=Krasniqi|first3=Ahmet|last4=Puttemans|first4=Janik|last5=Muyldermans|first5=Serge|last6=Lahoutte|first6=Tony|last7=D’huyvetter|first7=Matthias|last8=Devoogdt|first8=Nick|title=Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle|journal=Expert Opinion on Biological Therapy|date=19 May 2016|volume=16|issue=8|pages=1035–1047|doi=10.1080/14712598.2016.1185412|pmc=4940885}}
4. ^{{cite book|last1=Seidl|first1=Christof|last2=Senekowitsch-Schmidtke|first2=Reingard|editor1-last=Baum|editor1-first=Richard P.|title=Therapeutic nuclear medicine|date=2011|publisher=Springer|location=Berlin|isbn=978-3-540-36718-5|pages=557–567|chapter=Targeted Alpha Particle Therapy of Peritoneal Carcinomas|doi=10.1007/174_2012_678}}
5. ^{{cite book|last1=Kane|first1=Suzanne Amador|title=Introduction to physics in modern medicine|date=2003|publisher=Taylor & Francis|location=London|isbn=9780415299633|page=243|edition=Repr.}}
6. ^{{cite journal|last1=Elgqvist|first1=Jörgen|last2=Frost|first2=Sofia|last3=Pouget|first3=Jean-Pierre|last4=Albertsson|first4=Per|title=The Potential and Hurdles of Targeted Alpha Therapy – Clinical Trials and Beyond|journal=Frontiers in Oncology|date=2014|volume=3|pages=324|doi=10.3389/fonc.2013.00324|pmid=24459634|pmc=3890691}}
7. ^{{cite book|last1=Baum|first1=Richard P|title=Therapeutic Nuclear Medicine|date=2014|publisher=Springer|location=Heidelberg|isbn=9783540367192|page=98}}
8. ^{{cite journal|last1=Hodgkins|first1=Paul S.|last2=O'Neill|first2=Peter|last3=Stevens|first3=David|last4=Fairman|first4=Micaela P.|title=The Severity of Alpha-Particle-Induced DNA Damage Is Revealed by Exposure to Cell-Free Extracts|journal=Radiation Research|date=December 1996|volume=146|issue=6|pages=660|doi=10.2307/3579382|pmid=8955716}}
9. ^{{cite journal|last1=Seidl|first1=Christof|title=Radioimmunotherapy with α-particle-emitting radionuclides|journal=Immunotherapy|date=April 2014|volume=6|issue=4|pages=431–458|doi=10.2217/imt.14.16|pmid=24815783}}
10. ^{{cite journal|last1=Apostolidis|first1=C.|last2=Molinet|first2=R.|last3=McGinley|first3=J.|last4=Abbas|first4=K.|last5=Möllenbeck|first5=J.|last6=Morgenstern|first6=A.|title=Cyclotron production of Ac-225 for targeted alpha therapy|journal=Applied Radiation and Isotopes|date=March 2005|volume=62|issue=3|pages=383–387|doi=10.1016/j.apradiso.2004.06.013|pmid=15607913}}
11. ^{{cite journal|last1=Miederer|first1=Matthias|last2=Scheinberg|first2=David A.|last3=McDevitt|first3=Michael R.|title=Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications|journal=Advanced Drug Delivery Reviews|date=September 2008|volume=60|issue=12|pages=1371–1382|doi=10.1016/j.addr.2008.04.009|pmc=3630456}}
12. ^{{cite journal|last1=Haddad|first1=Ferid|last2=Barbet|first2=Jacques|last3=Chatal|first3=Jean-Francois|title=The ARRONAX Project|journal=Current Radiopharmaceuticalse|date=1 July 2011|volume=4|issue=3|pages=186–196|doi=10.2174/1874471011104030186|pmid=22201708}}
13. ^{{cite web|title=Radium-223 dichloride for treating hormone-relapsed prostate cancer with bone metastases|url=https://www.nice.org.uk/guidance/ta412/chapter/1-recommendations|website=National Institute for Health and Care Excellence|accessdate=19 December 2016}}
14. ^{{cite journal|last1=Parker|first1=C.|last2=Nilsson|first2=S.|last3=Heinrich|first3=D.|last4=Helle|first4=S.I.|last5=O'Sullivan|first5=J.M.|last6=Fosså|first6=S.D.|last7=Chodacki|first7=A.|last8=Wiechno|first8=P.|last9=Logue|first9=J.|last10=Seke|first10=M.|last11=Widmark|first11=A.|last12=Johannessen|first12=D.C.|last13=Hoskin|first13=P.|last14=Bottomley|first14=D.|last15=James|first15=N.D.|last16=Solberg|first16=A.|last17=Syndikus|first17=I.|last18=Kliment|first18=J.|last19=Wedel|first19=S.|last20=Boehmer|first20=S.|last21=Dall'Oglio|first21=M.|last22=Franzén|first22=L.|last23=Coleman|first23=R.|last24=Vogelzang|first24=N.J.|last25=O'Bryan-Tear|first25=C.G.|last26=Staudacher|first26=K.|last27=Garcia-Vargas|first27=J.|last28=Shan|first28=M.|last29=Bruland|first29=Ø.S.|last30=Sartor|first30=O.|title=Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer|journal=New England Journal of Medicine|date=18 July 2013|volume=369|issue=3|pages=213–223|doi=10.1056/NEJMoa1213755|pmid=23863050}}
15. ^{{cite journal|last1=Jurcic|first1=Joseph G.|last2=Rosenblat|first2=Todd L.|title=Targeted Alpha-Particle Immunotherapy for Acute Myeloid Leukemia|journal=American Society of Clinical Oncology Educational Book|date=2014|volume=34|pages=e126–e131|doi=10.14694/EdBook_AM.2014.34.e126|pmid=24857092|doi-access=free}}
16. ^{{cite journal|last1=Allen|first1=Barry J|last2=Raja|first2=Chand|last3=Rizvi|first3=Syed|last4=Li|first4=Yong|last5=Tsui|first5=Wendy|last6=Zhang|first6=David|last7=Song|first7=Emma|last8=Qu|first8=Chang Fa|last9=Kearsley|first9=John|last10=Graham|first10=Peter|last11=Thompson|first11=John|title=Targeted alpha therapy for cancer|journal=Physics in Medicine and Biology|date=21 August 2004|volume=49|issue=16|pages=3703–3712|doi=10.1088/0031-9155/49/16/016|pmid=15446799}}
17. ^{{cite journal|last1=Kim|first1=Young-Seung|last2=Brechbiel|first2=Martin W.|title=An overview of targeted alpha therapy|journal=Tumor Biology|date=6 December 2011|volume=33|issue=3|pages=573–590|doi=10.1007/s13277-011-0286-y|pmid=22143940}}
18. ^{{cite journal|last1=Larson|first1=Steven M.|last2=Carrasquillo|first2=Jorge A.|last3=Cheung|first3=Nai-Kong V.|last4=Press|first4=Oliver W.|title=Radioimmunotherapy of human tumours|journal=Nature Reviews Cancer|date=22 May 2015|volume=15|issue=6|pages=347–360|doi=10.1038/nrc3925|pmc=4798425}}
19. ^{{cite journal|last1=Sofou|first1=S|title=Radionuclide carriers for targeting of cancer.|journal=International Journal of Nanomedicine|date=2008|volume=3|issue=2|pages=181–99|pmc=2527672}}
20. ^{{cite journal|last1=Arazi|first1=L|last2=Cooks|first2=T|last3=Schmidt|first3=M|last4=Keisari|first4=Y|last5=Kelson|first5=I|title=Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters|journal=Physics in Medicine and Biology|date=21 August 2007|volume=52|issue=16|pages=5025–5042|doi=10.1088/0031-9155/52/16/021}}
21. ^{{cite journal|last1=Huang|first1=Chen-Yu|last2=Pourgholami|first2=Mohammad H.|last3=Allen|first3=Barry J.|title=Optimizing radioimmunoconjugate delivery in the treatment of solid tumor|journal=Cancer Treatment Reviews|date=November 2012|volume=38|issue=7|pages=854–860|doi=10.1016/j.ctrv.2011.12.005}}
{{Nuclear technology}}

4 : Nuclear technology|Nuclear medicine|Medical physics|Cancer treatments

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/30 14:21:16