词条 | Tetraethoxymethane |
释义 |
| ImageFile = Tetraethyl ortho carbonic Acid Formula V.1.svg | ImageSize = 200px | ImageAlt = | IUPACName = | OtherNames = Tetraethyl orthocarbonate | Section1 = {{Chembox Identifiers | CASNo = 78-09-1 | PubChem = 66213 | UNII = W2P2570012 | EINECS = 201-082-2 | ChEMBL = 46525 | InChI=1S/C9H20O4/c1-5-10-9(11-6-2,12-7-3)13-8-4/h5-8H2,1-4H3 | InChIKey = CWLNAJYDRSIKJS-UHFFFAOYSA-N | SMILES = CCOC(OCC)(OCC)OCC | Section2 = {{Chembox Properties | Formula = C9H20O4 | MolarMass = 192,25 g·mol−1 | Appearance = liquid | Density = | MeltingPt = | BoilingPt = | Solubility = | Section3 = {{Chembox Hazards | MainHazards = | FlashPt = | GHSPictograms = {{GHS02}} {{GHS07}} | HPhrases = {{H-phrases|226|315|319|335}} | AutoignitionPt = }} Tetraethoxymethane is a chemical compound which is formally formed by complete ethylation of the hypothetical orthocarbonic acid C(OH)4 (orthocarboxylic acid violates the Erlenmeyer rule and is unstable in free state). HistoryTetraethoxymethane was described the first time in 1864.[1] SynthesisThe preparation of tetraethoxymethane from the highly toxic trichloronitromethane is known in the literature[1][2][3][4] and achieves only yields of 46-49[3] to 58%:[4] The obvious synthetic route from tetrachloromethane does not provide the desired product, as in the homologous tetramethoxymethane.[5] Starting from the less toxic trichloroacetonitrile (compared with trichloronitromethane), higher yields can be obtained (up to 85%).[6] An alternative reaction, bypassing problematic reactants, is the reaction of dialkyltin dialkoxides with carbon disulfide at elevated temperature in an autoclave:[7] A more recent synthesis starts directly from sodium ethoxide, tin(IV)chloride, and carbon disulfide.[8] PropertiesTetraethoxymethane is water-clear, aromatic or fruity smelling,[9] liquid of low-viscosity which is unstable against strong acids and strong bases.[10] UsesTetraethoxymethane can be used as a solvent and for the alkylation of CH-acidic compounds (e.g. phenols and carboxylic acids). In addition, it reacts with amines, enol ethers and sulfonamides,[11] whereby spiro compounds can also be obtained. Spiro orthocarbonates (SOCs)[12] are of some industrial interest, as they are used as additives for reducing shrinkage during the polymerization of epoxides (they are used as expanding monomers).[13] References1. ^1 H. Bassett, Ueber das vierfach-basische kohlensaure Aethyl, Ann. 132, 54 (1864), {{DOI|10.1002/jlac.18641320106}}. 2. ^H. Tieckelmann, H.W. Post, The preparation of methyl, ethyl, propyl, and butyl orthocarbonates, J. Org. Chem., 13 (2), 265–267 (1948), {{DOI|10.1021/jo01160a014}}. 3. ^1 {{OrgSynth|Kurzcode=cv4p0457 |Autor=J.D. Roberts, R.E. McMahon |title=Ethyl Orthocarbonate |Jahrgang=1952 |Volume=32 |Seiten=68 |ColVol=4 |ColVolSeiten=457 |doi=10.15227/orgsyn.032.0068 }} 4. ^1 Europäische Patentschrift EP 0881212 B1, Production method of aminobenzene compound, Erfinder: H. Hashimoto et al., Anmelder: Takeda Chemical Industries, Ltd., veröffentlicht am 30. Oktober 2001. 5. ^R.H. De Wolfe, Carboxylic ortho acid derivatives: preparation and synthetic applications, Organic Chemistry, Vol. 14, Academic Press, Inc. New York – London, 1970, {{ISBN|978-0-12-214550-6}}. 6. ^US-Patent US 6825385, Process for the preparation of orthocarbonates, Erfinder: G. Fries, J. Kirchhoff, Anmelder: Degussa AG, erteilt am 30. November 2004. 7. ^S. Sakai et al., Reaction of Dialkyltin Dialkoxides with Carbon Disulfide at Higher Temperature. Preparation of Orthocarbonates, J. Org. Chem., 36 (9), 1176 (1971), {{DOI|10.1021/jo00808a002}}. 8. ^S. Sakai et al., A new method for preparation of tetraalkyl orthocarbonates from sodium alkoxides, tetrachlorostannane, and carbon disulfide, Synthesis 1984 (3), 233–234, {{DOI|10.1055/s-1984-30785}}. 9. ^J. H. Ruth, Odor Thresholds and Irritation Levels of Several Chemical Substances: A Review, Am. Ind. Hyg. Assoc. J. 47, A-142 – A-151, (1986). 10. ^{{Sigma-Aldrich|ALDRICH|163627|Datum=17. Oktober 2013}} 11. ^W. Kantlehner et al., Die präparative Chemie der O- und N-funktionellen Orthokohlensäure-Derivate, Synthesis, 1977, 73–90. 12. ^D.T. Vodak et al., One-Step Synthesis and Structure of an Oligo(spiro-orthocarbonate), J. Am. Chem., Soc., 124, 4942–4943 (2002), {{DOI|10.1021/ja17683i}}. 13. ^R. Acosta Ortiz et al., Novel diol spiro orthocarbonates derived from glycerol as anti-shrinkage additives for the cationic photopolymerization of epoxy monomers, Polymer International, 59(5), 680–685 (2010), {{DOI|10.1002/pi.2755}}. 2 : Carbonate esters|Orthoesters |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。