词条 | Timeline of machine learning | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
This page is a timeline of machine learning. Major discoveries, achievements, milestones and other major events are included. Overview
Timeline
See also
References1. ^Solomonoff, Ray J. "A formal theory of inductive inference. Part II." Information and control 7.2 (1964): 224–254. 2. ^1 2 3 4 5 {{cite news|last1=Marr|first1=Bernard|title=A Short History of Machine Learning – Every Manager Should Read|url=https://www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learning-every-manager-should-read/#2a1a75f9323f|work=Forbes|accessdate=28 Sep 2016}} 3. ^{{cite journal|last1=Siegelmann|first1=Hava|first2=Eduardo|last2=Sontag|title=Computational Power of Neural Networks |journal=Journal of Computer and System Sciences|volume=50|issue=1|year=1995 |pages=132–150}} 4. ^{{cite journal |last1=Siegelmann |first1=Hava |title=Computation Beyond the Turing Limit |journal=Journal of Computer and System Sciences |volume=238 |issue=28 |year=1995 |pages=632–637}} 5. ^{{cite journal |first1=Asa |last1=Ben-Hur |first2=David |last2=Horn |first3=Hava |last3=Siegelmann |first4=Vladimir|last4=Vapnik |title=Support vector clustering |journal=Journal of Machine Learning Research|volume=2 |year=2001 |pages=51–86}} 6. ^{{cite journal |last1=Hofmann |first1=Thomas |first2=Bernhard |last2=Schölkopf |first3=Alexander J. |last3=Smola |title=Kernel methods in machine learning |journal=The Annals of Statistics |volume=36 |issue=3 |year=2008 |pages=1171–1220 |jstor=25464664}} 7. ^{{cite web |first1=James |last1=Bennett |first2=Stan |last2=Lanning |title=The netflix prize |journal=Proceedings of KDD Cup and Workshop 2007 |date=2007 |url=https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf}} 8. ^{{cite journal|last1=Bayes|first1=Thomas|title=An Essay towards solving a Problem in the Doctrine of Chance|journal=Philosophical Transactions|date=1 January 1763|volume=53|pages=370–418|doi=10.1098/rstl.1763.0053|url=http://rstl.royalsocietypublishing.org/content/53/370.full.pdf|accessdate=15 June 2016|jstor=105741}} 9. ^{{cite book|last1=Legendre|first1=Adrien-Marie|title=Nouvelles méthodes pour la détermination des orbites des comètes|date=1805|publisher=Firmin Didot|location=Paris|page=viii|url=https://books.google.com/books/about/Nouvelles_m%C3%A9thodes_pour_la_d%C3%A9terminati.html?id=FRcOAAAAQAAJ&redir_esc=y|accessdate=13 June 2016|language=French}} 10. ^{{cite web|last1=O'Connor|first1=J J|last2=Robertson|first2=E F|title=Pierre-Simon Laplace|url=http://www-history.mcs.st-and.ac.uk/Biographies/Laplace.html|publisher=School of Mathematics and Statistics, University of St Andrews, Scotland|accessdate=15 June 2016}} 11. ^{{cite journal|last1=Hayes|first1=Brian|title=First Links in the Markov Chain|url=http://www.americanscientist.org/issues/pub/first-links-in-the-markov-chain/|accessdate=15 June 2016|work=American Scientist|issue=March–April 2013|publisher=Sigma Xi, The Scientific Research Society|page=92|doi=10.1511/2013.101.1|quote=Delving into the text of Alexander Pushkin's novel in verse Eugene Onegin, Markov spent hours sifting through patterns of vowels and consonants. On January 23, 1913, he summarized his findings in an address to the Imperial Academy of Sciences in St. Petersburg. His analysis did not alter the understanding or appreciation of Pushkin's poem, but the technique he developed—now known as a Markov chain—extended the theory of probability in a new direction.|volume=101}} 12. ^{{cite journal|last1=Turing|first1=Alan|title=Computing Machinery and Intelligence|journal=Mind|date=October 1950|volume=59|issue=236|pages=433–460|doi=10.1093/mind/LIX.236.433|url=http://mind.oxfordjournals.org/content/LIX/236/433|accessdate=8 June 2016}} 13. ^{{Harvnb|Crevier|1993|pp=34–35}} and {{Harvnb|Russell|Norvig|2003|p=17}} 14. ^{{cite news|last1=McCarthy|first1=John|last2=Feigenbaum|first2=Ed|title=Arthur Samuel: Pioneer in Machine Learning|url=http://www.aaai.org/ojs/index.php/aimagazine/article/view/840/758|accessdate=5 June 2016|work=AI Magazine|issue=3|publisher=Association for the Advancement of Artificial Intelligence|page=10}} 15. ^{{cite journal|last1=Rosenblatt|first1=Frank|title=The perceptron: A probabilistic model for information storage and organization in the brain|journal=Psychological Review|date=1958|volume=65|issue=6|pages=386–408|doi=10.1037/h0042519 |url=http://www.staff.uni-marburg.de/~einhaeus/GRK_Block/Rosenblatt1958.pdf}} 16. ^{{cite news|last1=Mason|first1=Harding|last2=Stewart|first2=D|last3=Gill|first3=Brendan|title=Rival|url=http://www.newyorker.com/magazine/1958/12/06/rival-2|accessdate=5 June 2016|work=The New Yorker|date=6 December 1958}} 17. ^{{cite web|last1=Child|first1=Oliver|title=Menace: the Machine Educable Noughts And Crosses Engine Read|url=http://chalkdustmagazine.com/features/menace-machine-educable-noughts-crosses-engine/#more-3326|website=Chalkdust Magazine |accessdate=16 Jan 2018}} 18. ^{{cite web|last1=Cohen|first1=Harvey|title=The Perceptron|url=http://harveycohen.net/image/perceptron.html|accessdate=5 June 2016}} 19. ^{{cite web|last1=Colner|first1=Robert|title=A brief history of machine learning|url=http://www.slideshare.net/bobcolner/a-brief-history-of-machine-learning|website=SlideShare|accessdate=5 June 2016}} 20. ^Seppo Linnainmaa (1970). "The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors." Master's Thesis (in Finnish), Univ. Helsinki, 6–7. 21. ^{{cite journal |first=Seppo |last=Linnainmaa |authorlink=Seppo Linnainmaa |year=1976 |title=Taylor expansion of the accumulated rounding error |journal=BIT Numerical Mathematics |volume=16 |issue=2 |pages=146–160 |doi=10.1007/BF01931367}} 22. ^{{cite journal |last=Griewank |first=Andreas |year=2012 |title=Who Invented the Reverse Mode of Differentiation? |journal=Documenta Matematica, Extra Volume ISMP |pages=389–400}} 23. ^Griewank, Andreas and Walther, A. Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM, 2008. 24. ^{{cite journal |authorlink=Jürgen Schmidhuber |last=Schmidhuber |first=Jürgen |year=2015 |title=Deep learning in neural networks: An overview |journal=Neural Networks |volume=61 |pages=85–117 |arxiv=1404.7828|bibcode=2014arXiv1404.7828S }} 25. ^Schmidhuber, Jürgen (2015). Deep Learning. Scholarpedia, 10(11):32832. Section on Backpropagation 26. ^{{cite journal|last1=Fukushima|first1=Kunihiko|title=Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern The Recognitron Unaffected by Shift in Position|journal=Biological Cybernetics|date=1980|volume=36|pages=193–202|url=http://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf|accessdate=5 June 2016|doi=10.1007/bf00344251|pmid=7370364}} 27. ^{{cite journal|last1=Le Cun|first1=Yann|title=Deep Learning|citeseerx=10.1.1.297.6176}} 28. ^{{cite journal|last1=Hopfield|first1=John|title=Neural networks and physical systems with emergent collective computational abilities|journal=Proceedings of the National Academy of Sciences of the United States of America|date=April 1982|volume=79|pages=2554–2558|url=http://www.pnas.org/content/79/8/2554.full.pdf|accessdate=8 June 2016|doi=10.1073/pnas.79.8.2554|pmid=6953413|pmc=346238|bibcode=1982PNAS...79.2554H}} 29. ^{{cite journal|last1=Rumelhart|first1=David|last2=Hinton|first2=Geoffrey|last3=Williams|first3=Ronald|title=Learning representations by back-propagating errors|journal=Nature|date=9 October 1986|volume=323|pages=533–536|url=http://elderlab.yorku.ca/~elder/teaching/cosc6390psyc6225/readings/hinton%201986.pdf|accessdate=5 June 2016|doi=10.1038/323533a0|bibcode=1986Natur.323..533R}} 30. ^{{cite journal|last1=Watksin|first1=Christopher|title=Learning from Delayed Rewards|date=1 May 1989|url=http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf}} 31. ^{{cite news|last1=Markoff|first1=John|title=BUSINESS TECHNOLOGY; What's the Best Answer? It's Survival of the Fittest|url=https://www.nytimes.com/1990/08/29/business/business-technology-what-s-the-best-answer-it-s-survival-of-the-fittest.html|accessdate=8 June 2016|work=New York Times|date=29 August 1990}} 32. ^{{cite journal|last1=Tesauro|first1=Gerald|title=Temporal Difference Learning and TD-Gammon|journal=Communications of the ACM|date=March 1995|volume=38|issue=3|doi=10.1145/203330.203343|url=http://www.bkgm.com/articles/tesauro/tdl.html}} 33. ^{{cite journal|last1=Ho|first1=Tin Kam|title=Random Decision Forests|journal=Proceedings of the Third International Conference on Document Analysis and Recognition|date=August 1995|volume=1|pages=278–282|doi=10.1109/ICDAR.1995.598994|url=http://ect.bell-labs.com/who/tkh/publications/papers/odt.pdf|accessdate=5 June 2016|publisher=IEEE|location=Montreal, Quebec|isbn=0-8186-7128-9}} 34. ^{{cite web|last1=Golge|first1=Eren|title=BRIEF HISTORY OF MACHINE LEARNING|url=http://www.erogol.com/brief-history-machine-learning/|website=A Blog From a Human-engineer-being|accessdate=5 June 2016}} 35. ^{{cite journal|last1=Cortes|first1=Corinna|last2=Vapnik|first2=Vladimir|title=Support-vector networks|journal=Machine Learning|date=September 1995|volume=20|issue=3|pages=273–297|doi=10.1007/BF00994018|publisher=Kluwer Academic Publishers|issn=0885-6125}} 36. ^{{cite journal|last1=Hochreiter|first1=Sepp|last2=Schmidhuber|first2=Jürgen|title=LONG SHORT-TERM MEMORY|journal=Neural Computation|date=1997|volume=9|issue=8|pages=1735–1780|url=http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf|doi=10.1162/neco.1997.9.8.1735|pmid=9377276|deadurl=yes|archiveurl=https://web.archive.org/web/20150526132154/http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf|archivedate=2015-05-26|df=}} 37. ^{{cite web|last1=LeCun|first1=Yann|last2=Cortes|first2=Corinna|last3=Burges|first3=Christopher|title=THE MNIST DATABASE of handwritten digits|url=http://yann.lecun.com/exdb/mnist/|accessdate=16 June 2016}} 38. ^{{cite journal|last1=Collobert|first1=Ronan|last2=Benigo|first2=Samy|last3=Mariethoz|first3=Johnny|title=Torch: a modular machine learning software library|date=30 October 2002|url=http://www.idiap.ch/ftp/reports/2002/rr02-46.pdf|accessdate=5 June 2016}} 39. ^{{cite web|title=The Netflix Prize Rules|url=http://www.netflixprize.com/rules|website=Netflix Prize|publisher=Netflix|accessdate=16 June 2016|deadurl=yes|archiveurl=https://www.webcitation.org/65tSo1csp?url=http://www.netflixprize.com/rules|archivedate=3 March 2012|df=}} 40. ^{{Cite web|url=https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/|title=ImageNet: the data that spawned the current AI boom — Quartz|last=Gershgorn|first=Dave|website=qz.com|language=en-US|access-date=2018-03-30}} 41. ^{{Cite news|url=https://www.nytimes.com/2016/07/19/technology/reasons-to-believe-the-ai-boom-is-real.html|title=Reasons to Believe the A.I. Boom Is Real|last=Hardy|first=Quentin|date=2016-07-18|work=The New York Times|access-date=2018-03-30|language=en-US|issn=0362-4331}} 42. ^{{cite web|title=About|url=https://www.kaggle.com/about|website=Kaggle|publisher=Kaggle Inc|accessdate=16 June 2016}} 43. ^{{cite news|last1=Markoff|first1=John|title=Computer Wins on 'Jeopardy!': Trivial, It's Not|url=https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html?pagewanted=all&_r=0|accessdate=5 June 2016|work=New York Times|date=17 February 2011|page=A1}} 44. ^{{cite conference | last1 = Le | first1 = Quoc V. | last2 = Ranzato | first2 = Marc'Aurelio | last3 = Monga | first3 = Rajat | last4 = Devin | first4 = Matthieu | last5 = Corrado | first5 = Greg | last6 = Chen | first6 = Kai | last7 = Dean | first7 = Jeffrey | last8 = Ng | first8 = Andrew Y. | arxiv = 1112.6209 | contribution = Building high-level features using large scale unsupervised learning | contribution-url = https://icml.cc/2012/papers/73.pdf | publisher = icml.cc / Omnipress | title = Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012 | year = 2012| bibcode = 2011arXiv1112.6209L}} 45. ^{{cite news|last1=Markoff|first1=John|title=How Many Computers to Identify a Cat? 16,000|url=https://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html|accessdate=5 June 2016|work=New York Times|date=26 June 2012|page=B1}} 46. ^{{cite journal|last1=Taigman|first1=Yaniv|last2=Yang|first2=Ming|last3=Ranzato|first3=Marc'Aurelio|last4=Wolf|first4=Lior|title=DeepFace: Closing the Gap to Human-Level Performance in Face Verification|journal=Conference on Computer Vision and Pattern Recognition|date=24 June 2014|url=https://research.facebook.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/|accessdate=8 June 2016}} 47. ^{{cite web |last1=Canini|first1=Kevin|last2=Chandra|first2=Tushar|last3=Ie|first3=Eugene|last4=McFadden|first4=Jim|last5=Goldman|first5=Ken|last6=Gunter|first6=Mike|last7=Harmsen|first7=Jeremiah|last8=LeFevre|first8=Kristen|last9=Lepikhin|first9=Dmitry|last10=Llinares|first10=Tomas Lloret|last11=Mukherjee|first11=Indraneel|last12=Pereira|first12=Fernando|last13=Redstone|first13=Josh|last14=Shaked|first14=Tal|last15=Singer|first15=Yoram|title=Sibyl: A system for large scale supervised machine learning|url=https://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf|website=Jack Baskin School of Engineering|publisher=UC Santa Cruz|accessdate=8 June 2016}} 48. ^{{cite news|last1=Woodie|first1=Alex|title=Inside Sibyl, Google's Massively Parallel Machine Learning Platform|url=http://www.datanami.com/2014/07/17/inside-sibyl-googles-massively-parallel-machine-learning-platform/|accessdate=8 June 2016|work=Datanami|publisher=Tabor Communications|date=17 July 2014}} 49. ^{{cite web|title=Google achieves AI 'breakthrough' by beating Go champion|url=https://www.bbc.com/news/technology-35420579|website=BBC News|publisher=BBC|accessdate=5 June 2016|date=27 January 2016}} 50. ^{{cite web|title=AlphaGo|url=https://www.deepmind.com/alpha-go.html|website=Google DeepMind|publisher=Google Inc|accessdate=5 June 2016}} 2 : Machine learning|Computing timelines |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。