请输入您要查询的百科知识:

 

词条 Transcriptional amplification
释义

  1. Mechanisms of transcriptional amplification

  2. Identifying and measuring transcriptional amplification

  3. Role in disease

  4. References

In genetics, transcriptional amplification is the process in which the total amounts of messenger RNA (mRNA) molecules from expressed genes are increased during disease, development, or in response to stimuli.

At the subset of genes expressed in a given cell, the transcribing activity of RNA Polymerase II results in mRNA production. Transcriptional amplification is specifically defined as the increase in per-cell abundance of this set of expressed mRNAs. Transcriptional amplification is caused by changes in the amount or activity of transcription-regulating proteins.

Mechanisms of transcriptional amplification

Gene expression is regulated by numerous types of proteins that directly or indirectly influence transcription by RNA Polymerase II. As opposed to transcriptional activators or repressors that selectively activate or repress specific genes, amplifiers of transcription act globally on the set of initially expressed genes.

Several known regulators of transcriptional amplification have been characterized including the oncogene Myc.,[1][2] the Rett syndrome protein MECP2,[3] and the BET bromodomain protein BRD4.[4] In particular, the Myc protein amplifies transcription by binding to promoters and enhancers of active genes where it directly recruits the transcription elongation factor P-TEFb. Furthermore, the BRD4 protein is a regulator of Myc activity.

Identifying and measuring transcriptional amplification

Commonly used gene expression experiments interrogate the expression of one (qPCR) or many (microarray, RNA-Seq) genes. These techniques generally measure relative mRNA levels and employ normalization methods that assume only a small number of genes show altered expression.[5] Instead, single cell or cell count normalized absolute measurements of mRNA abundance are required to reveal transcriptional amplification.[6] Additionally, global measurements of mRNA or total mRNA per cell can also uncover evidence for transcriptional amplification.[7][8]

Cells in which transcription has been amplified have additional suggestive hallmarks that amplification has occurred. Cells with increased mRNA levels may be larger, consistent with an increased abundance of gene products. This increase in the amount of gene product may result in a decreased doubling time.

Role in disease

Transcriptional amplification has been implicated in cancer,[9][10] Rett syndrome,[11] heart disease,[12] Down syndrome,[13] and cellular aging.[14] In cancer, Myc driven transcriptional amplification is posited to help tumor cells overcome rate-limiting constraints in growth and proliferation.[15] Drugs that target the transcription or mRNA processing machinery are known to be particularly effective against Myc-driven tumor models,[16][17] suggesting that dampening of transcriptional amplification can have anti-tumor effects. Similarly, small molecules targeting the BET bromodomain protein BRD4, which is up-regulated during heart failure, can block cardiac hypertrophy in mouse models.[18][19] In Rett syndrome, which is caused by loss of function of the transcriptional regulator MeCP2, MeCP2 was shown to specifically amplify transcription in neurons and not neuronal precursors.[20] Restoration of MeCP2 reverses disease symptoms associated with Rett syndrome[21][22]

References

1. ^{{cite journal|last1=Lin|first1=CY|last2=Lovén|first2=J|last3=Rahl|first3=PB|last4=Paranal|first4=RM|last5=Burge|first5=CB|last6=Bradner|first6=JE|last7=Lee|first7=TI|last8=Young|first8=RA|title=Transcriptional amplification in tumor cells with elevated c-Myc.|journal=Cell|date=28 September 2012|volume=151|issue=1|pages=56–67|pmid=23021215|pmc=3462372|doi=10.1016/j.cell.2012.08.026}}
2. ^{{cite journal|last1=Nie|first1=Z|last2=Hu|first2=G|last3=Wei|first3=G|last4=Cui|first4=K|last5=Yamane|first5=A|last6=Resch|first6=W|last7=Wang|first7=R|last8=Green|first8=DR|last9=Tessarollo|first9=L|last10=Casellas|first10=R|last11=Zhao|first11=K|last12=Levens|first12=D|title=c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells.|journal=Cell|date=28 September 2012|volume=151|issue=1|pages=68–79|pmid=23021216|pmc=3471363|doi=10.1016/j.cell.2012.08.033}}
3. ^{{cite journal|last1=Li|first1=Y|last2=Wang|first2=H|last3=Muffat|first3=J|last4=Cheng|first4=AW|last5=Orlando|first5=DA|last6=Lovén|first6=J|last7=Kwok|first7=SM|last8=Feldman|first8=DA|last9=Bateup|first9=HS|last10=Gao|first10=Q|last11=Hockemeyer|first11=D|last12=Mitalipova|first12=M|last13=Lewis|first13=CA|last14=Vander Heiden|first14=MG|last15=Sur|first15=M|last16=Young|first16=RA|last17=Jaenisch|first17=R|title=Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons.|journal=Cell Stem Cell|date=3 October 2013|volume=13|issue=4|pages=446–58|pmid=24094325|pmc=4053296|doi=10.1016/j.stem.2013.09.001}}
4. ^{{cite journal|last1=Anand|first1=P|last2=Brown|first2=JD|last3=Lin|first3=CY|last4=Qi|first4=J|last5=Zhang|first5=R|last6=Artero|first6=PC|last7=Alaiti|first7=MA|last8=Bullard|first8=J|last9=Alazem|first9=K|last10=Margulies|first10=KB|last11=Cappola|first11=TP|last12=Lemieux|first12=M|last13=Plutzky|first13=J|last14=Bradner|first14=JE|last15=Haldar|first15=SM|title=BET bromodomains mediate transcriptional pause release in heart failure.|journal=Cell|date=1 August 2013|volume=154|issue=3|pages=569–82|pmid=23911322|pmc=4090947|doi=10.1016/j.cell.2013.07.013}}
5. ^{{cite journal|last1=Hannah|first1=MA|last2=Redestig|first2=H|last3=Leisse|first3=A|last4=Willmitzer|first4=L|title=Global mRNA changes in microarray experiments.|journal=Nature Biotechnology|date=July 2008|volume=26|issue=7|pages=741–2|pmid=18612292|doi=10.1038/nbt0708-741}}
6. ^{{cite journal|last1=Lovén|first1=J|last2=Orlando|first2=DA|last3=Sigova|first3=AA|last4=Lin|first4=CY|last5=Rahl|first5=PB|last6=Burge|first6=CB|last7=Levens|first7=DL|last8=Lee|first8=TI|last9=Young|first9=RA|title=Revisiting global gene expression analysis.|journal=Cell|date=26 October 2012|volume=151|issue=3|pages=476–82|pmid=23101621|pmc=3505597|doi=10.1016/j.cell.2012.10.012}}
7. ^{{cite journal|last1=Lin|first1=CY|last2=Lovén|first2=J|last3=Rahl|first3=PB|last4=Paranal|first4=RM|last5=Burge|first5=CB|last6=Bradner|first6=JE|last7=Lee|first7=TI|last8=Young|first8=RA|title=Transcriptional amplification in tumor cells with elevated c-Myc.|journal=Cell|date=28 September 2012|volume=151|issue=1|pages=56–67|pmid=23021215|pmc=3462372|doi=10.1016/j.cell.2012.08.026}}
8. ^{{cite journal|last1=Kanno|first1=J|last2=Aisaki|first2=K|last3=Igarashi|first3=K|last4=Nakatsu|first4=N|last5=Ono|first5=A|last6=Kodama|first6=Y|last7=Nagao|first7=T|title="Per cell" normalization method for mRNA measurement by quantitative PCR and microarrays.|journal=BMC Genomics|date=29 March 2006|volume=7|pages=64|pmid=16571132|pmc=1448209|doi=10.1186/1471-2164-7-64}}
9. ^{{cite journal|last1=Lin|first1=CY|last2=Lovén|first2=J|last3=Rahl|first3=PB|last4=Paranal|first4=RM|last5=Burge|first5=CB|last6=Bradner|first6=JE|last7=Lee|first7=TI|last8=Young|first8=RA|title=Transcriptional amplification in tumor cells with elevated c-Myc.|journal=Cell|date=28 September 2012|volume=151|issue=1|pages=56–67|pmid=23021215|pmc=3462372|doi=10.1016/j.cell.2012.08.026}}
10. ^{{cite journal|last1=Nie|first1=Z|last2=Hu|first2=G|last3=Wei|first3=G|last4=Cui|first4=K|last5=Yamane|first5=A|last6=Resch|first6=W|last7=Wang|first7=R|last8=Green|first8=DR|last9=Tessarollo|first9=L|last10=Casellas|first10=R|last11=Zhao|first11=K|last12=Levens|first12=D|title=c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells.|journal=Cell|date=28 September 2012|volume=151|issue=1|pages=68–79|pmid=23021216|pmc=3471363|doi=10.1016/j.cell.2012.08.033}}
11. ^{{cite journal|last1=Li|first1=Y|last2=Wang|first2=H|last3=Muffat|first3=J|last4=Cheng|first4=AW|last5=Orlando|first5=DA|last6=Lovén|first6=J|last7=Kwok|first7=SM|last8=Feldman|first8=DA|last9=Bateup|first9=HS|last10=Gao|first10=Q|last11=Hockemeyer|first11=D|last12=Mitalipova|first12=M|last13=Lewis|first13=CA|last14=Vander Heiden|first14=MG|last15=Sur|first15=M|last16=Young|first16=RA|last17=Jaenisch|first17=R|title=Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons.|journal=Cell Stem Cell|date=3 October 2013|volume=13|issue=4|pages=446–58|pmid=24094325|pmc=4053296|doi=10.1016/j.stem.2013.09.001}}
12. ^{{cite journal|last1=Anand|first1=P|last2=Brown|first2=JD|last3=Lin|first3=CY|last4=Qi|first4=J|last5=Zhang|first5=R|last6=Artero|first6=PC|last7=Alaiti|first7=MA|last8=Bullard|first8=J|last9=Alazem|first9=K|last10=Margulies|first10=KB|last11=Cappola|first11=TP|last12=Lemieux|first12=M|last13=Plutzky|first13=J|last14=Bradner|first14=JE|last15=Haldar|first15=SM|title=BET bromodomains mediate transcriptional pause release in heart failure.|journal=Cell|date=1 August 2013|volume=154|issue=3|pages=569–82|pmid=23911322|pmc=4090947|doi=10.1016/j.cell.2013.07.013}}
13. ^{{cite journal|last1=Lane|first1=AA|last2=Chapuy|first2=B|last3=Lin|first3=CY|last4=Tivey|first4=T|last5=Li|first5=H|last6=Townsend|first6=EC|last7=van Bodegom|first7=D|last8=Day|first8=TA|last9=Wu|first9=SC|last10=Liu|first10=H|last11=Yoda|first11=A|last12=Alexe|first12=G|last13=Schinzel|first13=AC|last14=Sullivan|first14=TJ|last15=Malinge|first15=S|last16=Taylor|first16=JE|last17=Stegmaier|first17=K|last18=Jaffe|first18=JD|last19=Bustin|first19=M|last20=te Kronnie|first20=G|last21=Izraeli|first21=S|last22=Harris|first22=MH|last23=Stevenson|first23=KE|last24=Neuberg|first24=D|last25=Silverman|first25=LB|last26=Sallan|first26=SE|last27=Bradner|first27=JE|last28=Hahn|first28=WC|last29=Crispino|first29=JD|last30=Pellman|first30=D|last31=Weinstock|first31=DM|title=Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation.|journal=Nature Genetics|date=June 2014|volume=46|issue=6|pages=618–23|pmid=24747640|pmc=4040006|doi=10.1038/ng.2949}}
14. ^{{cite journal|last1=Hu|first1=Z|last2=Chen|first2=K|last3=Xia|first3=Z|last4=Chavez|first4=M|last5=Pal|first5=S|last6=Seol|first6=JH|last7=Chen|first7=CC|last8=Li|first8=W|last9=Tyler|first9=JK|title=Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging.|journal=Genes & Development|date=15 February 2014|volume=28|issue=4|pages=396–408|pmid=24532716|pmc=3937517|doi=10.1101/gad.233221.113}}
15. ^{{cite journal|last1=Ruggero|first1=D|title=The role of Myc-induced protein synthesis in cancer.|journal=Cancer Research|date=1 December 2009|volume=69|issue=23|pages=8839–43|pmid=19934336|pmc=2880919|doi=10.1158/0008-5472.CAN-09-1970}}
16. ^{{cite journal|last1=Christensen|first1=CL|last2=Kwiatkowski|first2=N|last3=Abraham|first3=BJ|last4=Carretero|first4=J|last5=Al-Shahrour|first5=F|last6=Zhang|first6=T|last7=Chipumuro|first7=E|last8=Herter-Sprie|first8=GS|last9=Akbay|first9=EA|last10=Altabef|first10=A|last11=Zhang|first11=J|last12=Shimamura|first12=T|last13=Capelletti|first13=M|last14=Reibel|first14=JB|last15=Cavanaugh|first15=JD|last16=Gao|first16=P|last17=Liu|first17=Y|last18=Michaelsen|first18=SR|last19=Poulsen|first19=HS|last20=Aref|first20=AR|last21=Barbie|first21=DA|last22=Bradner|first22=JE|last23=George|first23=RE|last24=Gray|first24=NS|last25=Young|first25=RA|last26=Wong|first26=KK|title=Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor.|journal=Cancer Cell|date=8 December 2014|volume=26|issue=6|pages=909–22|pmid=25490451|pmc=4261156|doi=10.1016/j.ccell.2014.10.019}}
17. ^{{cite journal|last1=Hsu|first1=TY|last2=Simon|first2=LM|last3=Neill|first3=NJ|last4=Marcotte|first4=R|last5=Sayad|first5=A|last6=Bland|first6=CS|last7=Echeverria|first7=GV|last8=Sun|first8=T|last9=Kurley|first9=SJ|last10=Tyagi|first10=S|last11=Karlin|first11=KL|last12=Dominguez-Vidaña|first12=R|last13=Hartman|first13=JD|last14=Renwick|first14=A|last15=Scorsone|first15=K|last16=Bernardi|first16=RJ|last17=Skinner|first17=SO|last18=Jain|first18=A|last19=Orellana|first19=M|last20=Lagisetti|first20=C|last21=Golding|first21=I|last22=Jung|first22=SY|last23=Neilson|first23=JR|last24=Zhang|first24=XH|last25=Cooper|first25=TA|last26=Webb|first26=TR|last27=Neel|first27=BG|last28=Shaw|first28=CA|last29=Westbrook|first29=TF|title=The spliceosome is a therapeutic vulnerability in MYC-driven cancer.|journal=Nature|date=17 September 2015|volume=525|issue=7569|pages=384–8|pmid=26331541|pmc=4831063|doi=10.1038/nature14985}}
18. ^{{cite journal|last1=Anand|first1=P|last2=Brown|first2=JD|last3=Lin|first3=CY|last4=Qi|first4=J|last5=Zhang|first5=R|last6=Artero|first6=PC|last7=Alaiti|first7=MA|last8=Bullard|first8=J|last9=Alazem|first9=K|last10=Margulies|first10=KB|last11=Cappola|first11=TP|last12=Lemieux|first12=M|last13=Plutzky|first13=J|last14=Bradner|first14=JE|last15=Haldar|first15=SM|title=BET bromodomains mediate transcriptional pause release in heart failure.|journal=Cell|date=1 August 2013|volume=154|issue=3|pages=569–82|pmid=23911322|pmc=4090947|doi=10.1016/j.cell.2013.07.013}}
19. ^{{cite journal|last1=Stratton|first1=MS|last2=Lin|first2=CY|last3=Anand|first3=P|last4=Tatman|first4=PD|last5=Ferguson|first5=BS|last6=Wickers|first6=ST|last7=Ambardekar|first7=AV|last8=Sucharov|first8=CC|last9=Bradner|first9=JE|last10=Haldar|first10=SM|last11=McKinsey|first11=TA|title=Signal-Dependent Recruitment of BRD4 to Cardiomyocyte Super-Enhancers Is Suppressed by a MicroRNA.|journal=Cell Reports|date=2 August 2016|volume=16|issue=5|pages=1366–78|pmid=27425608|pmc=4972677|doi=10.1016/j.celrep.2016.06.074}}
20. ^{{cite journal|last1=Li|first1=Y|last2=Wang|first2=H|last3=Muffat|first3=J|last4=Cheng|first4=AW|last5=Orlando|first5=DA|last6=Lovén|first6=J|last7=Kwok|first7=SM|last8=Feldman|first8=DA|last9=Bateup|first9=HS|last10=Gao|first10=Q|last11=Hockemeyer|first11=D|last12=Mitalipova|first12=M|last13=Lewis|first13=CA|last14=Vander Heiden|first14=MG|last15=Sur|first15=M|last16=Young|first16=RA|last17=Jaenisch|first17=R|title=Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons.|journal=Cell Stem Cell|date=3 October 2013|volume=13|issue=4|pages=446–58|pmid=24094325|pmc=4053296|doi=10.1016/j.stem.2013.09.001}}
21. ^{{cite journal|last1=Luikenhuis|first1=S|last2=Giacometti|first2=E|last3=Beard|first3=CF|last4=Jaenisch|first4=R|title=Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=20 April 2004|volume=101|issue=16|pages=6033–8|pmid=15069197|pmc=395918|doi=10.1073/pnas.0401626101}}
22. ^{{cite journal|last1=Garg|first1=SK|last2=Lioy|first2=DT|last3=Cheval|first3=H|last4=McGann|first4=JC|last5=Bissonnette|first5=JM|last6=Murtha|first6=MJ|last7=Foust|first7=KD|last8=Kaspar|first8=BK|last9=Bird|first9=A|last10=Mandel|first10=G|title=Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome.|journal=The Journal of Neuroscience |date=21 August 2013|volume=33|issue=34|pages=13612–20|pmid=23966684|pmc=3755711|doi=10.1523/JNEUROSCI.1854-13.2013}}

1 : Genetics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 9:43:12