请输入您要查询的百科知识:

 

词条 Tutupaca
释义

  1. Oral tradition

  2. Geology and geomorphology

      Composition    Sector collapse    Geologic context  

  3. Vegetation

  4. Eruption history

      Hazards    Geothermal activity  

  5. Notes

  6. References

      Sources  

  7. External links

{{featured article}}{{About||the mountain on the border of the Moquegua Region and the Tacna Region, Peru|Tutupaca (Moquegua-Tacna){{!}}Tutupaca (Moquegua-Tacna)}}{{Infobox mountain
| photo = Tutupaca2.jpg
| photo_caption = Tutupaca viewed from a southern direction.
|name=Tutupaca
|map=Peru
|coordinates={{coord|17.026|S|70.372|W|display=inline,intitle}}
|coordinates_ref=[1]
}}

Tutupaca is a volcano in the region of Tacna in Peru. It is part of the Peruvian segment of the Central Volcanic Zone, one of several volcanic belts in the Andes. Tutupaca consists of three overlapping volcanoes formed by lava flows and lava domes made out of andesite and dacite, which grew on top of older volcanic rocks. The highest of these is usually reported to be {{convert|5815|m}} high and was glaciated in the past.

Several volcanoes in Peru have been active in recent times, including Tutupaca. Their volcanism is caused by the subduction of the Nazca Plate beneath the South America Plate. One of these volcanoes collapsed in historical time, probably in 1802, generating a large debris avalanche with a volume probably exceeding {{convert|0.6|-|0.8|km3}} and a pyroclastic flow. The associated eruption was among the largest in Peru for which there are historical records. The volcano became active about 700,000 years ago, and activity continued into the Holocene, but whether there were historical eruptions was initially unclear; some eruptions were instead attributed to the less eroded Yucamane volcano. The Peruvian government plans to monitor the volcano for future activity. Tutupaca features geothermal manifestations with fumaroles and hot springs.

Oral tradition

The people in Candarave considered Tutupaca to be a "bad" mountain, while Yucamane was the "good" one; this may reflect that Tutupaca had recent volcanic eruptions.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=13}} The Peruvian geographer Mateo Paz Soldán[2] dedicated an ode to Tutupaca.[3]

Geology and geomorphology

Tutupaca is {{convert|25|-|30|km}} north of the town of Candarave in the region of Tacna in Peru.[4]{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=3}} Lake Suches lies north of the volcano, and two rivers flow nearby: the Callazas River, flowing eastward to the north of the volcano, and then southward past Tutupaca's eastern flank, and the Tacalaya River, which flows south along Tutupaca's western flank.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=2}}{{efn|The course of both rivers is influenced by tectonic lineaments.{{sfn|Pauccara|Matsuda|2015|p=1}}}} The local climate is cold, and the terrain is stony, with little vegetation.{{sfn|Pauccara|Matsuda|2015|p=1}} During the wet season, the mountain is snow-covered,[5] and meltwater from Tutupaca and other regional mountains is an important source of water for the rivers in the region.[6]

Tutupaca consists of two volcanic complexes: an older complex that is highly eroded, and two northerly peaks which formed more recently. Of these, the eastern peak ("eastern Tutupaca") consists of several presumably Holocene lava domes{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=2}} and is {{convert|5790|m}} high, while the western one ("western Tutupaca") consists of lava domes, lava flows and Plinian eruption deposits of Pleistocene age, and reaches a height of {{convert|5815|m}}.{{efn|These heights are from a 2015 source.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=4}}[4]}}[4] The Global Volcanism Program gives heights of {{convert|5753|m}} for the eastern and {{convert|5801|m}} for the western summit.[1] The western peak is the highest summit of Tutupaca.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=3}}

The basement that Tutupaca rises from lies at elevations ranging from {{convert|4400|m|ft}} to {{convert|4600|m|ft}}. The older complex is formed mainly by lava flows, which during the Pleistocene were eroded by glaciers forming up to {{convert|100|m}} thick moraines.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=3}} Cirques and moraines are also found on the western summit, and tephra layers extend west of the volcano. The older complex, which includes lava domes in the form of small hills on its southern part,[10] was the source of an ignimbrite that covers the western and southern parts of the volcano.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=3}} Postglacial lava flows emanating from a vent located between the two peaks have been identified.[1]

Composition

The older complex and western Tutupaca have erupted andesite and dacite, while eastern Tutupaca has only produced dacite.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|pp=3–4}} Trachyandesite and trachyte also occur.{{sfn|Pauccara|Matsuda|2015|p=3}} The volcanic rocks erupted during the Holocene define a potassium-rich calc-alkaline suite.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=11}} Dacites from eastern Tutupaca contain amphibole, apatite, biotite, clinopyroxene, iron-titanium oxides, orthopyroxene, plagioclase, quartz and sphene.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|pp=11–12}} Elemental sulfur deposits have been identified at Tutupaca[12] and a 1996 map of the volcano shows a sulfur mine on its southeastern flank.

Sector collapse

A {{convert|1|km}} wide amphitheatre in eastern Tutupaca, open to the northeast, was formed by a major collapse of the volcano. Lava domes from the younger Tutupaca as well as highly altered lavas from the older complex are exposed within the collapse scar, which is the origin of a {{convert|6|-|8|km|adj=on}} long debris avalanche deposit. The deposit is mostly found within glacial valleys and is interlaid by the Paipatja pyroclastic flow which divides the debris into two units.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=2}} The pyroclastic flow reaches both Lake Suches north of the volcano and the Callazas River east of it.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=5}}

The two units of the debris avalanche are distinguished by their appearance. One features {{convert|100|-|200|m|adj=on}} long hummock-like hills, as is typical for volcanic debris avalanches, and the other has ridges which vary in length from {{convert|100|to|150|m}}. The ridges range from only a few meters to more than {{convert|0.5|m}} in height, and from {{convert|10|to|30|m}} in height.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|pp=3,5}} Such ridges have been observed in other collapse deposits such as at Shiveluch volcano in Russia, and have been explained by sorting processes that take place within granular flows.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=7}} The differences between the two units appear to be because the first unit was formed from the basal part of Tutupaca, while the second unit was formed by the more recent lava domes of the eastern volcano and formed a granular flow.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=4}}{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=10}}

The collapse apparently started in the hydrothermal system of the volcano and progressed to affect a growing lava dome,{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=6}} with a total volume probably exceeding {{convert|0.6|-|0.8|km3}}.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=6}} The total surface area covered by the collapse is about {{convert|12|-|13|km2}}.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=4}} This collapse was not the first in the history of Tutupaca: an older collapse occurred on the southeast-east flanks of the volcano.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=4}} Such large collapses of volcanoes took place in historical time at Mount Bandai in 1888 and at Mount St. Helens in 1980; they can produce large avalanches of debris.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=1}}

Geologic context

Off the coast of Peru, the Nazca Plate subducts at {{convert|5|-|6|cm/year}} beneath the South America Plate,{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=1}}{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=3}} causing volcanism in three of the four volcanic belts in the Andes, including the Central Volcanic Zone where Tutupaca is located.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=1}}{{efn|The Central Volcanic Zone is one of four volcanic belts in the Andes, together with the Northern Volcanic Zone, the Southern Volcanic Zone and the Austral Volcanic Zone.[14]}} Other Peruvian volcanoes include Sara Sara, Solimana, Coropuna, the Andagua volcanic field, Ampato{{En dash}}Sabancaya, Chachani, Ubinas, Ticsani, Yucamane and Casiri.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=3}} During historical times, major eruptions took place in Peru at El Misti 2,000 years ago and at Huaynaputina in 1600.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=1}}

The basement of the region consists of folded Mesozoic sediments, and Cenozoic volcanic and sedimentary cover which overlies the Mesozoic rocks.{{sfn|Scandiffio|Verastegui|Portilla|1992|p=346}} There are many tectonic lineaments and faults which were active in the Tertiary;{{sfn|Scandiffio|Verastegui|Portilla|1992|p=347}} one of these crosses Tutupaca from north to south,{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=2}} and others influence the positions of geothermal features.{{sfn|Pauccara|Matsuda|2015|p=3}} The Huaylillas ignimbrite complex{{efn|The Huaylillas ignimbrites were emplaced between 24 and 12 million years ago.{{sfn|Pauccara|Matsuda|2015|p=2}}}} underlies some of the volcanic centres,{{sfn|Scandiffio|Verastegui|Portilla|1992|p=347}} which include a first set of eroded volcanoes that were active between 8.4–5 and 4–2 million years ago, principally erupting lava flows. These were followed by a second set of volcanoes which were also mainly active with lava flows, such as Casiri, Tutupaca and Yucamane. A third phase formed dacitic lava domes such as Purupuruni about 100,000 years ago.{{sfn|Scandiffio|Verastegui|Portilla|1992|p=348}}

Vegetation

In the Western Cordillera, altitudes between {{convert|3500|-|3900|m}} are dominated by vegetation such as cacti, herbs, Peruvian feather grass and yareta, but also lichens and mosses. Wetlands, called bofedales, display a diverse plant life. Above {{convert|4000|m}} elevation plant life diminishes and in 2003{{En dash}}2012 by {{convert|5800|m}} there was perpetual snow.[15]

Eruption history

Tutupaca is about 700,000 years old.{{sfn|Scandiffio|Verastegui|Portilla|1992|p=348}} The older complex was active at first with lava flows and then with a major explosive eruption.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=3}} The small lava domes on the older complex have been dated to 260,000 ± 200,000 years ago.[10] Volcanic activity continued into the Holocene,[1] and the volcano is considered to be potentially active.[4] Today, fumaroles occur on the summit of Tutupaca.{{sfn|Pauccara|Matsuda|2015|p=9}}

There are reports of eruptions in 1780, 1787, 1802, 1862 and 1902,{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=3}} supported by dates obtained through radiocarbon dating showing there were eruptions during this period.{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=1}} Some authors believed that Yucamane volcano was a more likely source for these eruptions,{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=3}} but Samaniego 2015 et al. showed that Yucumane last erupted 3,000 years ago,[19] implying that the reported eruptions, especially the 1802 and 1787 events, most likely occurred at Tutupaca.[1]

The sector collapse of eastern Tutupaca was accompanied by an eruption that was among the largest in Peruvian history, reaching a volcanic explosivity index of 3 or 4. Contemporaneous chronicles document ashfall as far as {{convert|165|km}} to the south in Arica.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|pp=14–15}} The collapse has been dated to 1731–1802 with high probability,{{efn|The uncalibrated radiocarbon age of the samples is 218±14 years before present,{{sfn|Valderrama|Roche|Samaniego|Vries|2016|p=10}} with 95% confidence; the calibrated age consists of two ranges, with an 85% probability that the date lies between 1731 and 1802.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=13}}}} and is thought to be associated with the 1802 eruption.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=13}} Shortly before the collapse{{efn|Stratigraphic relations imply that this pyroclastic flow predates the main collapse, but radiocarbon dating does not have sufficient resolution to separate the two events in time.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=13}}}}, a pyroclastic flow was erupted from the volcano{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=13}} probably as a consequence of the collapse of a lava dome. It formed a deposit on the east flank of Tutupaca{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|pp=4–5}} which reaches thicknesses of {{convert|6|m}}.[10] The previous eruption may have destabilized the volcano and triggered the main collapse, which also generated the Paipatja pyroclastic flow. The area was thinly inhabited at the time and thus the impact of the eruption was small.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=16}}

Hazards

Based on the history of Tutupaca a future eruption can be envisaged where renewed activity causes another collapse of the volcano. In this case, about 8,000–10,000 people as well as neighbouring geothermal power and mining infrastructure would be in danger.{{sfn|Samaniego|Valderrama|Mariño|Vries|2015|p=16}} Several small towns, diversion dams, irrigation canals and the two roads Ilo{{En dash}}Desaguadero and Tacna{{En dash}}Tarata{{En dash}}Candarave would also be vulnerable.[4]

The Peruvian Instituto Geológico, Minero y Metalúrgico{{efn|A public agency[23] which is among other things responsible for monitoring volcanoes in Peru.[24]}} (INGEMMET) has published a volcano hazard map for Tutupaca,[25] but the volcano itself was not monitored since it is not active.[26] In 2017, Tutupaca was identified as one of the volcanoes to be monitored by the future Peruvian Southern Volcano Observatory. This would entail surveillance of earthquake activity, changes in the composition of fumarole gases and deformation of the volcanoes, and real time video. This project, budgeted to cost 18,500,000 Peruvian sols ({{toUSD|18500000|PER|round=yes}} US dollars) and involves the construction of thirty monitoring stations and the main observatory in the Sachaca District, is scheduled to be operative by early 2019.[27]

Geothermal activity

Tutupaca is also the name of a geothermal field in the neighbourhood of the volcano, which includes the areas of Azufre Chico, Azufre Grande, Callazas River, Pampa Turun Turun and Tacalaya River;{{sfn|Pauccara|Matsuda|2015|p=1}} they are part of the same geothermal system whose temperature at depth is higher than {{convert|200|C}}.{{sfn|Pauccara|Matsuda|2015|p=8}}{{sfn|Scandiffio|Verastegui|Portilla|1992|p=370}} The fields feature fumaroles, geysers,{{sfn|Scandiffio|Verastegui|Portilla|1992|p=348}} mud pots and occurrences of sulfur, both solid and in the form of hydrogen sulfide gas,{{sfn|Pauccara|Matsuda|2015|p=1}} as well as siliceous sinter and travertine deposits.[28] Hot springs at the foot of the Tutupaca volcano{{sfn|Scandiffio|Verastegui|Portilla|1992|p=355}} discharge water into the rivers.{{sfn|Pauccara|Matsuda|2015|p=1}}

Tutupaca has been mentioned as a potential site for geothermal power generation.[29] In 2013, Canada's Alterra Power and the Philippine Energy Development Corporation developed a joint venture to work on a geothermal prospect at Tutupaca,[30] although work at Tutupaca had not begun by October 2014.[31]

Notes

{{notelist}}

References

1. ^{{cite news|last1=Poma|first1=Sandy|title=En Tacna hay alto potencial geotérmico|url=https://diariocorreo.pe/ciudad/en-tacna-hay-alto-potencial-geotermico-103537/|accessdate=8 May 2018|work=Diario Correo|date=22 October 2014|language=es}}
2. ^{{cite news|last1=Flores|first1=Alena Mae S.|title=EDC signs Peru, Chile contracts|url=http://manilastandard.net/business/106416/edc-signs-peru-chile-contracts.html|accessdate=8 May 2018|work=Manila Standard Today|date=19 June 2013}}
3. ^{{cite journal|last1=Gałaś|first1=Andrzej|last2=Panajew|first2=Paweł|last3=Cuber|first3=Piotr|title=Stratovolcanoes in the Western Cordillera – Polish Scientific Expedition to Peru 2003–2012 reconnaissance research|journal=Geotourism/Geoturystyka|date=30 November 2015|volume=0|issue=37|page=66|doi=10.7494/geotour.2014.37.61|url=https://journals.agh.edu.pl/geotour/article/view/1808|language=en|issn=2353-3641}}
4. ^{{cite journal|last1=Steinmüller|first1=Klaus|title=Modern hot springs in the southern volcanic Cordillera of Peru and their relationship to Neogene epithermal precious-metal deposits|journal=Journal of South American Earth Sciences|date=September 2001|volume=14|issue=4|page=381|doi=10.1016/S0895-9811(01)00033-5|url=https://www.sciencedirect.com/science/article/pii/S0895981101000335|language=en|issn=0895-9811}}
5. ^{{cite journal|last1=Perales|first1=Oscar J.P.|title=General overview and prospects of the mining and metallurgical industry in peru|journal=Resources Processing|date=1994|volume=41|issue=2|page=75|doi=10.4144/rpsj1986.41.72|url=https://www.jstage.jst.go.jp/article/rpsj1986/41/2/41_2_72/_article|language=en|issn=1883-9150}}
6. ^{{cite web|title=Funciones y Organigrama|url=http://www.ingemmet.gob.pe/funciones-y-organigrama|website=INGEMMET|accessdate=9 April 2018|language=es}}
7. ^{{cite web|title=Quiénes Somos|url=http://www.ingemmet.gob.pe/quienes-somos|website=INGEMMET|accessdate=9 April 2018|language=es}}
8. ^{{cite news|title=U. Católica de Santa María rinde homenaje a siete científicos arequipeños por sus aportes a la ciencia|url=http://larepublica.pe/archivo/603966-u-catolica-de-santa-maria-rinde-homenaje-a-siete-cientificos-arequipenos-por-sus-aportes-a-la-ciencia|accessdate=8 April 2018|work=La República|date=12 January 2012|language=es}}
9. ^{{Cite book|publisher=Firmin Didot Frères, Fils et Cie|url=https://archive.org/details/gographiedupron00soldgoog|page=8|title=Géographie du Pérou|first=Mateo Paz|last=Soldán|date=1863|oclc=253927093|language=fr}}
10. ^{{Cite GVP|vn=354050|name=Yucamane|accessdate=21 March 2018}}
11. ^{{cite journal|last1=Begazo|first1=Jesús Gordillo|title=Desarrollo regional tardío y ocupación inca en la pre-cordillera de Tacna|journal=Ciencia & Desarrollo|volume=0|date=15 February 2017|issue=3|page=2|url=http://revistas.unjbg.edu.pe/index.php/CYD/article/view/68|language=es|issn=2304-8891}}
12. ^{{cite journal|last1=Amstutz|first1=G. C.|title=On the Formation of Snow Penitentes|journal=Journal of Glaciology|date=1959|volume=3|issue=24|page=309|doi=10.3189/S0022143000023972|url=https://www.cambridge.org/core/journals/journal-of-glaciology/article/div-classtitleon-the-formation-of-snow-span-classitalicpenitentesspandiv/B295C525E57B57785BE389557272DF9D|language=en|issn=0022-1430}}
13. ^{{cite journal|last1=Stern|first1=Charles R.|title=Active Andean volcanism: its geologic and tectonic setting|journal=Revista Geológica de Chile|date=2004|volume=31|issue=2|pages=161–206|doi=10.4067/S0716-02082004000200001|url=https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-02082004000200001|issn=0716-0208}}
14. ^{{cite news|last1=Quispe|first1=Juan Luis Silvera|title=Perú tiene reserva geotérmica para generar 3 mil MW de electricidad|url=http://larepublica.pe/archivo/713780-peru-tiene-reserva-geotermica-para-generar-3-mil-mw-de-electricidad|accessdate=7 March 2018|work=La República|date=27 May 2013|language=es}}
15. ^{{cite news|last1=Hancco|first1=Nelly|title=“Ojos” que vigilan a los cinco volcanes más activos del Perú (FOTOS)|url=https://diariocorreo.pe/edicion/arequipa/ojos-que-vigilan-a-los-cinco-volcanes-mas-activos-del-peru-fotos-742305/|accessdate=7 March 2018|agency=Diario Correo|date=9 April 2017|language=es}}
16. ^{{cite news|last1=Hancco|first1=Nelly|title=Ingemmet elabora el mapa de peligro del volcán Sara Sara|url=https://diariocorreo.pe/edicion/arequipa/ingemmet-elabora-el-mapa-de-peligro-del-volcan-sara-sara-744298/|accessdate=7 March 2018|agency=Diario Correo|date=18 April 2017|language=es}}
17. ^{{cite news|last1=Hancco|first1=Nelly|title=IGP vigilará los 10 volcanes más peligrosos del Perú|url=https://diariocorreo.pe/edicion/arequipa/igp-vigilara-los-10-volcanes-mas-peligrosos-del-peru-783302/|accessdate=7 March 2018|work=Diario Correo|date=31 October 2017|language=es}}
18. ^{{cite web|title=Geología del volcán Tutupaca|url=http://ovi.ingemmet.gob.pe/?page_id=1007|website=INGEMMET|accessdate=7 March 2018|language=es}}
19. ^{{cite web|title=Volcán Tutupaca|url=http://ovi.ingemmet.gob.pe/?page_id=64|website=INGEMMET|accessdate=7 March 2018|language=es}}
20. ^{{Cite GVP|vn=354040|name=Tutupaca|accessdate=21 March 2018}}
[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20]
}}

Sources

{{refbegin}}
  • {{cite journal|last1=Pauccara|first1=Vicentina Cruz|last2=Matsuda|first2=Koji|title=Geochemical Study of Thermal Waters in the Tutupaca Geothermal Zone, Tacna, South of Peru|url=http://apps.ingemmet.gob.pe/handle/ingemmet/708|date=2015|journal=Proceedings World Geothermal Congress 2015|accessdate=7 March 2018|ref=harv|format=PDF}}
  • {{cite journal|last1=Samaniego|first1=Pablo|last2=Valderrama|first2=Patricio|last3=Mariño|first3=Jersy|last4=Vries|first4=Benjamín van Wyk de|last5=Roche|first5=Olivier|last6=Manrique|first6=Nélida|last7=Chédeville|first7=Corentin|last8=Liorzou|first8=Céline|last9=Fidel|first9=Lionel|last10=Malnati|first10=Judicaëlle|title=The historical (218 ± 14 aBP) explosive eruption of Tutupaca volcano (Southern Peru)|journal=Bulletin of Volcanology|date=1 June 2015|volume=77|issue=6|page=51|doi=10.1007/s00445-015-0937-8|ref=harv|language=en|issn=0258-8900}}
  • {{cite web|last1=Scandiffio|first1=G.|last2=Verastegui|first2=D.|last3=Portilla|first3=F.|title=Geochemical report on the Challapalca and Tutupaca geothermal areas, Peru|url=http://www.iaea.org/inis/collection/nclcollectionstore/_public/23/047/23047525.pdf#page=340|website=IAEA|accessdate=7 March 2018|ref=harv|date=1992}}
  • {{cite journal|last1=Valderrama|first1=Patricio|last2=Roche|first2=Olivier|last3=Samaniego|first3=Pablo|last4=Vries|first4=Benjamin van Wyk de|last5=Bernard|first5=Karine|last6=Mariño|first6=Jersy|title=Dynamic implications of ridges on a debris avalanche deposit at Tutupaca volcano (southern Peru)|journal=Bulletin of Volcanology|date=1 February 2016|volume=78|issue=2|page=14|doi=10.1007/s00445-016-1011-x|ref=harv|language=en|issn=0258-8900}}
{{refend}}

External links

  • Evolución vulcanológica y magmática del edificio reciente del complejo volcánico Tutupaca (Tacna). Tesis de ingeniería, Universidad Nacional de San Agustín de Arequipa, 112 p. Manrique,N. (2013)
  • [https://tel.archives-ouvertes.fr/tel-01487051/ Origin and dynamics of volcanic debris avalanches : surface structure analysis of Tutupaca volcano]
  • Una gran erupción del volcán Tutupaca (Tacna) ocurrida hace approximadamente 200 años AP: Implicaciones para la evaluación de la amenaza
{{Andean volcanoes}}

10 : Stratovolcanoes of Peru|Landforms of Tacna Region|Andean Volcanic Belt|Mountains of Peru|Mountains of Tacna Region|Miocene volcanoes|Pliocene volcanoes|Miocene South America|Neogene South America|Five-thousanders of the Andes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 15:19:33