请输入您要查询的百科知识:

 

词条 Andrews–Curtis conjecture
释义

  1. References

In mathematics, the Andrews–Curtis conjecture states that every balanced presentation of the trivial group can be transformed into a trivial presentation by a sequence of Nielsen transformations on the relators together with conjugations of relators, named after James J. Andrews and Morton L. Curtis who proposed it in 1965. It is difficult to verify whether the conjecture holds for a given balanced presentation or not.

It is widely believed that the Andrews–Curtis conjecture is false. While there are no counterexamples known, there are numerous potential counterexamples.[1] It is known that the Zeeman conjecture on collapsibility implies the Andrews–Curtis conjecture.[2]

References

  • {{Citation | last1=Andrews | first1=J. J. | last2=Curtis | first2=M. L. | title=Free groups and handlebodies | doi=10.2307/2033843 | mr = 0173241 | year=1965 | journal=Proceedings of the American Mathematical Society | volume=16 | pages=192–195 | jstor=2033843 | issue=2 | publisher=American Mathematical Society}}
  • {{Springer|id=l/l120170|title=Low-dimensional topology, problems in}}
1. ^Open problems in combinatorial group theory
2. ^{{Springer|id=c/c110310|title=Collapsibility}}
{{DEFAULTSORT:Andrews-Curtis conjecture}}{{algebra-stub}}

2 : Combinatorial group theory|Conjectures

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 7:51:33