请输入您要查询的百科知识:

 

词条 Valina L. Dawson
释义

  1. Biography

  2. Research

  3. Awards

  4. References

{{Technical|date=October 2018}}

Valina L. Dawson (born August 5, 1961) is an American neuroscientist who is the director of the Programs in Neuroregeneration and Stem Cells at the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. She has joint appointments in the Department of Neurology,[1] Neuroscience [2] and Physiology.[3] She is a member of the Graduate Program in Cellular and Molecular Medicine and Biochemistry, Cellular and Molecular Biology.

Biography

Dawson grew up in the Sonoma Valley Wine Country in California. Dawson received her B.S. in Environmental Toxicology in 1983 from the University of California, Davis. She earned her Ph.D. in Pharmacology and Toxicology from the University of Utah School of Medicine. Postdoctoral training was conducted at the University of Pennsylvania and the National Institute on Drug Abuse Addiction Research Center. Dawson joined the faculty at Johns Hopkins University School of Medicine in 1994 as an Assistant Professor in the departments of Neurology, Neuroscience and Physiology. In 2001, she became an Associate Professor in the departments of Neurology, Neuroscience and Physiology and served as the Vice Chair of Faculty Development in the department of Neurology. Dawson was promoted to the position of Professor in the departments of Neurology, Neuroscience and Physiology in 2001. In 2002, she founded the Neuroregeneration Program in the Institute of Cell Engineering[4] and became Director of the Stem Cell Program in 2009. She was named a Daniel Nathans Innovator in 2017. She served the Society for Neuroscience as a Reviewing Editor (2003–2009) and then as a Senior Editor (2010–2016) for the Journal of Neuroscience and is now serving as an Advisory Board Editor for the other society journal, eNeuro. She also served the Society for Neuroscience on the Committee on Women in Neuroscience (2007–2010), Professional Development Committee (2009–2011) and the Program Committee (2011–2014). She serves on the Scientific Advisory Board of the New York Stem Cell Foundation, the Weill Cornell Burke Medical Research Institute [5] the External Advisory Board for the Interdepartmental Neuroscience (NUIN) graduate training program at Northwestern University, and the Advisory Board for NeuroMab.[6] She was a founder of AGY Therapeutics.[7] She is a founder and is on the Scientific Advisory Board of Neuraly and Valted, LLC.

Research

Dawson works closely with her husband and partner, Dr. Ted M. Dawson. Their research studies the molecular mechanisms that lead to neuronal cell death in neurodegenerative diseases, stroke and trauma. They discovered the critical role the gasous transmitter, nitric oxide (NO), plays in glutamate excitotoxicity[8][9] and stroke[10] with their postdoctoral mentor, Dr. Solomon H. Snyder. They defined the role for NO generated from neuronal NO synthase or immunologic NO synthase leads in models of HIV dementia[11][12] and Parkinson’s disease.[13][14] Exploring the signaling cascade led to the identification of peroxynitrite as the nitrogen oxide moiety that mediates neurotoxicity, and the role for poly(ADP-ribose) polymerase (PARP) [15][16] as the next step in the neurotoxic cascade. They discovered that poly (ADP-ribose) polymer (PAR) is a novel cell death signaling molecule that plays a critical role in neuronal injury.[17][18] Her research team discovered that PAR leads to cell death by facilitating the release of apoptosis inducing factor (AIF) factor[19][20] from the mitochondrial surface.[21] Parsylated AIF then recruits macrophage migration inhibitory factor (MIF) and the complex translocates to the nucleus where the nuclease activity of MIF leads to large scale DNA fragmentation.[22] To distinguish this form of cell death from other cell death signaling cascades[23] it was named Parthanatos, for PAR and the Greek god of death, Thanatos.[24] The enzyme that degrades PAR, poly (ADP-ribose) glycohydrolase, is not only an endogenous negative regulator of parthanatos, but required for cell viability.[25] In genetic screens to find cell signals that prevent neurotoxicity, her team discovered an endogenous inhibitor of parthanatos, Iduna (RNF146), a first in class PAR-dependent E3 ligase.[26][27] In the same screens, Botch was discovered which is an important inhibitor of Notch signaling via deglycination of Notch preventing Notch’s intracellular processing at the level of the Golgi, playing an important role in neuronal development and survival.[28][29] They also discovered Thorase, an AAA+ ATPase that regulates glutamate (AMPA) receptor trafficking and discovered that Thorase is an important regulator of synaptic plasticity, learning and memory.[30] Genetic variants of Thorase were found in schizophrenic patients. Expression of these variants in mice lead to behavioral deficits that were normalized with the AMPA antagonist Parampenal.[31] Mutations in Thorase leading to gain or loss of function result in lethal developmental disorders in children.[32][33]

With the discovery of gene mutations that are the cause of rare familial cases of Parkinson’s disease, their research team has probed the biologic and pathologic actions of these proteins. They discovered parkin was an E3 ligase that is inactive in patients with genetic mutations in parkin,[34] and that it is also inactive in sporadic Parkinson’s disease due to protein modifications by S-nitrosylation[35] and c-Abl tyrosine phosphorylation[36] which led to the discovery of the pathogenic targets, PARIS and AIMP2.[37] PARIS regulates the machinery critical to mitochondrial quality control and thus cell survival.[38] Surprisingly, AIMP2 directly interacts with PARP and activates Parthanatos.[39] Since there are PARP inhibitors in clinical use this finding may provide a new therapeutic target for the treatment of Parkinson’s disease. They discovered that DJ-1, which is dysfunctional in Parkinson’s disease, is an atypical peroxidoxin-like peroxidase and that its loss of function in PD leads to mitochondrial dysfunction.[40] The Dawson’s discovered that mutations in LRRK2 increase its kinase activity[41][42] and that inhibition of LRRK2 kinase activity is protective in models of Parkinson’s disease.[43] The increase in LRRK2 kinase activity leads to enhanced protein translation via the phosphorylation of the ribosomal protein s15.[44] Understanding this shift in the proteome due to altered translation will allow new insight into the alteration in expression of critical proteins that likely underlie the pathogenesis of Parkinson’s disease. ArfGAP regulates the GTPase activity of LRRK2 and they discovered that ArfGAP and LRRK2 reciprocally regulate the activity of each other determining neuronal viability.[45] Their labs also discovered that pathologic α-synuclein spreads in the nervous system via engagement with the lymphocyte-activation gene 3 (LAG3).[46] They discovered that Glucagon-like peptide-1 receptor (GLP1R) agonist, NLY01 prevents neuroinflammaory damage induced by pathologic α-synuclein in Parkinson’s disease via inhibition of microglia and prevention of the conversion of resting astrocytes to activated A1 astrocytes.[47] Their work continues to provide critical insights into understanding of the pathogenesis of PD and identify new opportunities for therapies to treat patients with Parkinson’s disease. Valina Dawson has published over 400 publications and has an H-index of 129.[48]

Awards

  • Distinguished Professorship, Xiangya Hospital, Central South University, Changsha, China[49]
  • Danial Nathans Innovator Award
  • Thomson Reuters Highly Cited Researcher and Worlds Most Influential Minds,
  • Elected Fellow of the American Heart Association (F.A.H.A.)
  • Elected Fellow of the American Association for the Advancement of Science
  • Elected to the American Neurological Association, Fellow
  • Javits Neuroscience Investigator Award
  • Potter Lectureship, Thomas Jefferson University
  • Frontiers in Clinical Neuroscience American Academy of Neurology

References

1. ^{{cite web|url=https://www.hopkinsmedicine.org/neurology_neurosurgery/index.html|title=Neurology and Neurosurgery|website=Hopkinsmedicine.org|accessdate=23 October 2018}}
2. ^{{cite web|url=http://neuroscience.jhu.edu|title=The Solomon H Snyder Department of Neuroscience|website=Neuroscience.jhu.edu|accessdate=23 October 2018}}
3. ^{{cite web|url=http://physiology.bs.jhmi.edu|title=Department of Physiology|website=Department of Physiology|accessdate=23 October 2018}}
4. ^{{cite web|url=https://www.hopkinsmedicine.org/institute_cell_engineering/index.html|title=The Johns Hopkins Institute for Cell Engineering (ICE) in Baltimore, Maryland|website=Hopkinsmedicine.org|accessdate=23 October 2018}}
5. ^{{cite web|url=http://burke.weill.cornell.edu/cause/about/about-burke-neurological-institute-bni|title=Our Role & Cause|website=Burke.weill.cornell.edu|accessdate=23 October 2018}}
6. ^{{cite web|url=http://neuromab.ucdavis.edu|title=Welcome to NeuroMab!|website=Neuromab.ucdavis.edu|accessdate=23 October 2018}}
7. ^{{cite web|url=http://www.agyinc.com|title=AGY Therapeutics Inc.|website=Agyinc.com|accessdate=23 October 2018}}
8. ^{{cite journal |author1=Dawson, V.L.|display-authors=etal |title=Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures |journal=Proc Natl Acad Sci U S A |date=1991 |volume=88 |issue=14 |pages=6368–6371 |pmc=52084|pmid=1648740 }}
9. ^{{cite journal |author1=Dawson, V.L.|display-authors=etal |title=Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures |journal=J. Neurosci. |date=1993 |volume=13 |issue=6 |pages=2651–61|pmid=7684776}}
10. ^{{cite journal |author1=Dawson, V.L.|display-authors=etal |title=Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice |journal=J. Neurosci. |date=1996 |volume=16 |issue=8 |pages=2479–87|pmid=8786424}}
11. ^{{cite journal |author1=Dawson, V.L.|display-authors=etal |title=Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures |journal=Proc Natl Acad Sci U S A |date=1993 |volume=90 |issue=8 |pages=3256–3259 |pmc=46278|pmid=8097316 }}
12. ^{{cite journal |author1=Adamson, D.C.|display-authors=etal |title=Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41 |journal=Science |date=1996 |volume=274 |issue=5294 |pages=1917–21 |pmid=8943206}}
13. ^{{cite journal |author1=Przedborski, S.|display-authors=etal |title=Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity |journal=Proc Natl Acad Sci U S A |date=1996 |volume=93 |issue=10 |pages=4565–4571|pmc=39317|pmid=8643444 }}
14. ^{{cite journal |last1=Liberatore |first1=GT |last2=Jackson-Lewis |first2=V |last3=Vukosavic |first3=S |last4=Mandir |first4=AS |last5=Vila |first5=M |last6=McAuliffe |first6=WG |last7=Dawson |first7=VL |last8=Dawson |first8=TM |last9=Przedborski |first9=S |title=Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease |journal=Nature Medicine |date=December 1999 |volume=5 |issue=12 |pages=1403–9 |doi=10.1038/70978 |pmid=10581083}}
15. ^{{cite journal |last1=Zhang |first1=J |last2=Dawson |first2=VL |last3=Dawson |first3=TM |last4=Snyder |first4=SH |title=Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity |journal=Science |date=4 February 1994 |volume=263 |issue=5147 |pages=687–9 |pmid=8080500}}
16. ^{{cite journal |last1=Eliasson |first1=MJ |last2=Sampei |first2=K |last3=Mandir |first3=AS |last4=Hurn |first4=PD |last5=Traystman |first5=RJ |last6=Bao |first6=J |last7=Pieper |first7=A |last8=Wang |first8=ZQ |last9=Dawson |first9=TM |last10=Snyder |first10=SH |last11=Dawson |first11=VL |title=Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia |journal=Nature Medicine |date=October 1997 |volume=3 |issue=10 |pages=1089–95 |pmid=9334719}}
17. ^{{cite journal |last1=Yu |first1=SW |last2=Andrabi |first2=SA |last3=Wang |first3=H |last4=Kim |first4=NS |last5=Poirier |first5=GG |last6=Dawson |first6=TM |last7=Dawson |first7=VL |title=Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death |journal=Proceedings of the National Academy of Sciences of the United States of America |date=28 November 2006 |volume=103 |issue=48 |pages=18314–9 |doi=10.1073/pnas.0606528103 |pmid=17116881|pmc=1838748 }}
18. ^{{cite journal |last1=Andrabi |first1=SA |last2=Kim |first2=NS |last3=Yu |first3=SW |last4=Wang |first4=H |last5=Koh |first5=DW |last6=Sasaki |first6=M |last7=Klaus |first7=JA |last8=Otsuka |first8=T |last9=Zhang |first9=Z |last10=Koehler |first10=RC |last11=Hurn |first11=PD |last12=Poirier |first12=GG |last13=Dawson |first13=VL |last14=Dawson |first14=TM |title=Poly(ADP-ribose) (PAR) polymer is a death signal |journal=Proceedings of the National Academy of Sciences of the United States of America |date=28 November 2006 |volume=103 |issue=48 |pages=18308–13 |doi=10.1073/pnas.0606526103 |pmid=17116882|pmc=1838747 }}
19. ^{{cite journal |last1=Yu |first1=SW |last2=Wang |first2=H |last3=Poitras |first3=MF |last4=Coombs |first4=C |last5=Bowers |first5=WJ |last6=Federoff |first6=HJ |last7=Poirier |first7=GG |last8=Dawson |first8=TM |last9=Dawson |first9=VL |title=Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor |journal=Science |date=12 July 2002 |volume=297 |issue=5579 |pages=259–63 |doi=10.1126/science.1072221 |pmid=12114629}}
20. ^{{cite journal |last1=Wang |first1=Y |last2=Kim |first2=NS |last3=Haince |first3=JF |last4=Kang |first4=HC |last5=David |first5=KK |last6=Andrabi |first6=SA |last7=Poirier |first7=GG |last8=Dawson |first8=VL |last9=Dawson |first9=TM |title=Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos) |journal=Science Signaling |date=5 April 2011 |volume=4 |issue=167 |pages=ra20 |doi=10.1126/scisignal.2000902 |pmid=21467298|pmc=3086524 }}
21. ^{{cite journal |last1=Yu |first1=SW |last2=Wang |first2=Y |last3=Frydenlund |first3=DS |last4=Ottersen |first4=OP |last5=Dawson |first5=VL |last6=Dawson |first6=TM |title=Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release |journal=ASN Neuro |date=18 November 2009 |volume=1 |issue=5 |pages=AN20090046 |doi=10.1042/AN20090046 |pmid=19863494|pmc=2784601 }}
22. ^{{cite journal |last1=Wang |first1=Y |last2=An |first2=R |last3=Umanah |first3=GK |last4=Park |first4=H |last5=Nambiar |first5=K |last6=Eacker |first6=SM |last7=Kim |first7=B |last8=Bao |first8=L |last9=Harraz |first9=MM |last10=Chang |first10=C |last11=Chen |first11=R |last12=Wang |first12=JE |last13=Kam |first13=TI |last14=Jeong |first14=JS |last15=Xie |first15=Z |last16=Neifert |first16=S |last17=Qian |first17=J |last18=Andrabi |first18=SA |last19=Blackshaw |first19=S |last20=Zhu |first20=H |last21=Song |first21=H |last22=Ming |first22=GL |last23=Dawson |first23=VL |last24=Dawson |first24=TM |title=A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1 |journal=Science |date=7 October 2016 |volume=354 |issue=6308 |pages=aad6872 |doi=10.1126/science.aad6872 |pmid=27846469|pmc=5134926 }}
23. ^{{cite journal |last1=Galluzzi |first1=L|display-authors=etal |title=Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 |journal=Cell Death and Differentiation |date=March 2018 |volume=25 |issue=3 |pages=486–541 |doi=10.1038/s41418-017-0012-4 |pmid=29362479|pmc=5864239 |hdl=1721.1/116948 }}
24. ^{{cite journal |last1=David |first1=KK |last2=Andrabi |first2=SA |last3=Dawson |first3=TM |last4=Dawson |first4=VL |title=Parthanatos, a messenger of death |journal=Frontiers in Bioscience (Landmark Edition) |date=1 January 2009 |volume=14 |pages=1116–28 |pmid=19273119|pmc=4450718 }}
25. ^{{cite journal |last1=Koh |first1=DW |last2=Lawler |first2=AM |last3=Poitras |first3=MF |last4=Sasaki |first4=M |last5=Wattler |first5=S |last6=Nehls |first6=MC |last7=Stöger |first7=T |last8=Poirier |first8=GG |last9=Dawson |first9=VL |last10=Dawson |first10=TM |title=Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality |journal=Proceedings of the National Academy of Sciences of the United States of America |date=21 December 2004 |volume=101 |issue=51 |pages=17699–704 |doi=10.1073/pnas.0406182101 |pmid=15591342|pmc=539714 }}
26. ^{{cite journal |last1=Andrabi |first1=SA |last2=Kang |first2=HC |last3=Haince |first3=JF |last4=Lee |first4=YI |last5=Zhang |first5=J |last6=Chi |first6=Z |last7=West |first7=AB |last8=Koehler |first8=RC |last9=Poirier |first9=GG |last10=Dawson |first10=TM |last11=Dawson |first11=VL |title=Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death |journal=Nature Medicine |date=June 2011 |volume=17 |issue=6 |pages=692–9 |doi=10.1038/nm.2387 |pmid=21602803|pmc=3709257 }}
27. ^{{cite journal |last1=Kang |first1=HC |last2=Lee |first2=YI |last3=Shin |first3=JH |last4=Andrabi |first4=SA |last5=Chi |first5=Z |last6=Gagné |first6=JP |last7=Lee |first7=Y |last8=Ko |first8=HS |last9=Lee |first9=BD |last10=Poirier |first10=GG |last11=Dawson |first11=VL |last12=Dawson |first12=TM |title=Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage |journal=Proceedings of the National Academy of Sciences of the United States of America |date=23 August 2011 |volume=108 |issue=34 |pages=14103–8 |doi=10.1073/pnas.1108799108 |pmid=21825151|pmc=3161609 }}
28. ^{{cite journal |last1=Chi |first1=Z |last2=Zhang |first2=J |last3=Tokunaga |first3=A |last4=Harraz |first4=MM |last5=Byrne |first5=ST |last6=Dolinko |first6=A |last7=Xu |first7=J |last8=Blackshaw |first8=S |last9=Gaiano |first9=N |last10=Dawson |first10=TM |last11=Dawson |first11=VL |title=Botch promotes neurogenesis by antagonizing Notch |journal=Developmental Cell |date=17 April 2012 |volume=22 |issue=4 |pages=707–20 |doi=10.1016/j.devcel.2012.02.011 |pmid=22445366|pmc=3331935 }}
29. ^{{cite journal |last1=Chi |first1=Z |last2=Byrne |first2=ST |last3=Dolinko |first3=A |last4=Harraz |first4=MM |last5=Kim |first5=MS |last6=Umanah |first6=G |last7=Zhong |first7=J |last8=Chen |first8=R |last9=Zhang |first9=J |last10=Xu |first10=J |last11=Chen |first11=L |last12=Pandey |first12=A |last13=Dawson |first13=TM |last14=Dawson |first14=VL |title=Botch is a γ-glutamyl cyclotransferase that deglycinates and antagonizes Notch |journal=Cell Reports |date=8 May 2014 |volume=7 |issue=3 |pages=681–8 |doi=10.1016/j.celrep.2014.03.048 |pmid=24767995|pmc=4031649 }}
30. ^{{cite journal |last1=Zhang |first1=J |last2=Wang |first2=Y |last3=Chi |first3=Z |last4=Keuss |first4=MJ |last5=Pai |first5=YM |last6=Kang |first6=HC |last7=Shin |first7=JH |last8=Bugayenko |first8=A |last9=Wang |first9=H |last10=Xiong |first10=Y |last11=Pletnikov |first11=MV |last12=Mattson |first12=MP |last13=Dawson |first13=TM |last14=Dawson |first14=VL |title=The AAA+ ATPase Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior |journal=Cell |date=15 April 2011 |volume=145 |issue=2 |pages=284–99 |doi=10.1016/j.cell.2011.03.016 |pmid=21496646|pmc=3085003 }}
31. ^{{cite journal |last1=Umanah |first1=GKE|display-authors=etal |title=Thorase variants are associated with defects in glutamatergic neurotransmission that can be rescued by Perampanel |journal=Science Translational Medicine |date=13 December 2017 |volume=9 |issue=420 |pages=eaah4985 |doi=10.1126/scitranslmed.aah4985 |pmid=29237760}}
32. ^{{cite journal |last1=Ahrens-Nicklas |first1=RC |last2=Umanah |first2=GK |last3=Sondheimer |first3=N |last4=Deardorff |first4=MA |last5=Wilkens |first5=AB |last6=Conlin |first6=LK |last7=Santani |first7=AB |last8=Nesbitt |first8=A |last9=Juulsola |first9=J |last10=Ma |first10=E |last11=Dawson |first11=TM |last12=Dawson |first12=VL |last13=Marsh |first13=ED |title=Precision therapy for a new disorder of AMPA receptor recycling due to mutations in ATAD1 |journal=Neurology. Genetics |date=February 2017 |volume=3 |issue=1 |pages=e130 |doi=10.1212/NXG.0000000000000130 |pmid=28180185|pmc=5289017 }}
33. ^{{cite journal |last1=Piard |first1=J|display-authors=etal |title=A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy |journal=Brain : A Journal of Neurology |volume=141 |issue=3 |pages=651–661 |date=30 January 2018 |doi=10.1093/brain/awx377 |pmid=29390050|pmc=5837721 }}
34. ^{{cite journal |last1=Zhang |first1=Y |last2=Gao |first2=J |last3=Chung |first3=KK |last4=Huang |first4=H |last5=Dawson |first5=VL |last6=Dawson |first6=TM |title=Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1 |journal=Proceedings of the National Academy of Sciences of the United States of America |date=21 November 2000 |volume=97 |issue=24 |pages=13354–9 |doi=10.1073/pnas.240347797 |pmid=11078524|pmc=27228 }}
35. ^{{cite journal |last1=Chung |first1=KK |last2=Thomas |first2=B |last3=Li |first3=X |last4=Pletnikova |first4=O |last5=Troncoso |first5=JC |last6=Marsh |first6=L |last7=Dawson |first7=VL |last8=Dawson |first8=TM |title=S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function |journal=Science |date=28 May 2004 |volume=304 |issue=5675 |pages=1328–31 |doi=10.1126/science.1093891 |pmid=15105460}}
36. ^{{cite journal |last1=Ko |first1=HS |last2=Lee |first2=Y |last3=Shin |first3=JH |last4=Karuppagounder |first4=SS |last5=Gadad |first5=BS |last6=Koleske |first6=AJ |last7=Pletnikova |first7=O |last8=Troncoso |first8=JC |last9=Dawson |first9=VL |last10=Dawson |first10=TM |title=Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function |journal=Proceedings of the National Academy of Sciences of the United States of America |date=21 September 2010 |volume=107 |issue=38 |pages=16691–6 |doi=10.1073/pnas.1006083107 |pmid=20823226|pmc=2944759 }}
37. ^{{cite journal |last1=Ko |first1=HS |last2=von Coelln |first2=R |last3=Sriram |first3=SR |last4=Kim |first4=SW |last5=Chung |first5=KK |last6=Pletnikova |first6=O |last7=Troncoso |first7=J |last8=Johnson |first8=B |last9=Saffary |first9=R |last10=Goh |first10=EL |last11=Song |first11=H |last12=Park |first12=BJ |last13=Kim |first13=MJ |last14=Kim |first14=S |last15=Dawson |first15=VL |last16=Dawson |first16=TM |title=Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death |journal=The Journal of Neuroscience |date=31 August 2005 |volume=25 |issue=35 |pages=7968–78 |doi=10.1523/JNEUROSCI.2172-05.2005 |pmid=16135753}}
38. ^{{cite journal |last1=Shin |first1=JH |last2=Ko |first2=HS |last3=Kang |first3=H |last4=Lee |first4=Y |last5=Lee |first5=YI |last6=Pletinkova |first6=O |last7=Troconso |first7=JC |last8=Dawson |first8=VL |last9=Dawson |first9=TM |title=PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease |journal=Cell |date=4 March 2011 |volume=144 |issue=5 |pages=689–702 |doi=10.1016/j.cell.2011.02.010 |pmid=21376232|pmc=3063894 }}
39. ^{{cite journal |last1=Lee |first1=Y |last2=Karuppagounder |first2=SS |last3=Shin |first3=JH |last4=Lee |first4=YI |last5=Ko |first5=HS |last6=Swing |first6=D |last7=Jiang |first7=H |last8=Kang |first8=SU |last9=Lee |first9=BD |last10=Kang |first10=HC |last11=Kim |first11=D |last12=Tessarollo |first12=L |last13=Dawson |first13=VL |last14=Dawson |first14=TM |title=Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss |journal=Nature Neuroscience |date=October 2013 |volume=16 |issue=10 |pages=1392–400 |doi=10.1038/nn.3500 |pmid=23974709|pmc=3785563 }}
40. ^{{cite journal |last1=Andres-Mateos |first1=E |last2=Perier |first2=C |last3=Zhang |first3=L |last4=Blanchard-Fillion |first4=B |last5=Greco |first5=TM |last6=Thomas |first6=B |last7=Ko |first7=HS |last8=Sasaki |first8=M |last9=Ischiropoulos |first9=H |last10=Przedborski |first10=S |last11=Dawson |first11=TM |last12=Dawson |first12=VL |title=DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase |journal=Proceedings of the National Academy of Sciences of the United States of America |date=11 September 2007 |volume=104 |issue=37 |pages=14807–12 |doi=10.1073/pnas.0703219104 |pmid=17766438|pmc=1976193 }}
41. ^{{cite journal |last1=West |first1=AB |last2=Moore |first2=DJ |last3=Biskup |first3=S |last4=Bugayenko |first4=A |last5=Smith |first5=WW |last6=Ross |first6=CA |last7=Dawson |first7=VL |last8=Dawson |first8=TM |title=Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity |journal=Proceedings of the National Academy of Sciences of the United States of America |date=15 November 2005 |volume=102 |issue=46 |pages=16842–7 |doi=10.1073/pnas.0507360102 |pmid=16269541|pmc=1283829 }}
42. ^{{cite journal |last1=Smith |first1=WW |last2=Pei |first2=Z |last3=Jiang |first3=H |last4=Moore |first4=DJ |last5=Liang |first5=Y |last6=West |first6=AB |last7=Dawson |first7=VL |last8=Dawson |first8=TM |last9=Ross |first9=CA |title=Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration |journal=Proceedings of the National Academy of Sciences of the United States of America |date=20 December 2005 |volume=102 |issue=51 |pages=18676–81 |doi=10.1073/pnas.0508052102 |pmid=16352719|pmc=1317945 }}
43. ^{{cite journal |last1=Lee |first1=BD |last2=Shin |first2=JH |last3=VanKampen |first3=J |last4=Petrucelli |first4=L |last5=West |first5=AB |last6=Ko |first6=HS |last7=Lee |first7=YI |last8=Maguire-Zeiss |first8=KA |last9=Bowers |first9=WJ |last10=Federoff |first10=HJ |last11=Dawson |first11=VL |last12=Dawson |first12=TM |title=Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease |journal=Nature Medicine |date=September 2010 |volume=16 |issue=9 |pages=998–1000 |doi=10.1038/nm.2199 |pmid=20729864|pmc=2935926 }}
44. ^{{cite journal |last1=Martin |first1=I|display-authors=etal |title=Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease |journal=Cell |date=10 April 2014 |volume=157 |issue=2 |pages=472–485 |doi=10.1016/j.cell.2014.01.064 |pmid=24725412|pmc=4040530 }}
45. ^{{cite journal |last1=Xiong |first1=Y |last2=Yuan |first2=C |last3=Chen |first3=R |last4=Dawson |first4=TM |last5=Dawson |first5=VL |title=ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2 |journal=The Journal of Neuroscience |date=14 March 2012 |volume=32 |issue=11 |pages=3877–86 |doi=10.1523/JNEUROSCI.4566-11.2012 |pmid=22423108|pmc=3319331 }}
46. ^{{cite journal |last1=Mao |first1=X|display-authors=etal |title=Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3 |journal=Science |date=30 September 2016 |volume=353 |issue=6307 |pages=aah3374 |doi=10.1126/science.aah3374 |pmid=27708076|pmc=5510615 }}
47. ^{{cite journal |author1=Yun, S.P.|display-authors=etal |title=Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease |journal=Nat Med |volume=24 |issue=7 |pages=931–938 |date=2018 |doi=10.1038/s41591-018-0051-5 |pmid=29892066 |pmc=6039259 |url=https://www.nature.com/articles/s41591-018-0051-5}}
48. ^{{cite web|url=https://scholar.google.com/citations?hl=en&user=JS3_-uoAAAAJ&view_op=list_works&gmla=AJsN-F6O3FuIAdRzZB9lKnEn5aLn63BvTfPf59c7acZ4ix_3lG5c2B2o6zWVQTK7wdcOa7AUORMvzt1XJ9Pz69ZCFXHrIvsWz6kbvZn84mfO8FaWU9VtMZuCySeil423CBjyXg1liHQd|title=Valina L. Dawson - Google Scholar Citations|website=Scholar.google.com|accessdate=23 October 2018}}
49. ^{{cite web|url=http://www.xiangya.com.cn/web/Content.aspx?chn=285&id=40298|title=美国约翰·霍普金斯大学Ted Murray Dawson教授、Valina Lynn Dawson教授受聘为我院荣誉杰出教授|website=Xiangya.com.cn|accessdate=23 October 2018}}
{{DEFAULTSORT:Dawson, Valina L.}}

6 : American neuroscientists|1961 births|University of California, Davis alumni|University of Utah School of Medicine alumni|Johns Hopkins University faculty|Living people

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 1:08:50