请输入您要查询的百科知识:

 

词条 Androdioecy
释义

  1. Evolution of androdioecy

     Androdioecy with dioecious ancestry  Androdioecy with hermaphroditic ancestry 

  2. Androdioecious species

     Anthozoa (Corals)  Nematoda (Roundworms)  Nemertea (Ribbon worms)  Arthropoda  Annelida (Ringed worms)  Chordata  Plants 

  3. See also

  4. References

  5. External links

Androdioecy is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison to the other major reproductive systems: dioecy, gynodioecy and hermaphroditism.[1] In animals, androdioecy has been considered an important stepping stone in the transition from dioecy to hermaphroditism, and vice versa.[2]

Evolution of androdioecy

The fitness requirements for androdioecy to arise and sustain itself are theoretically so improbable that it was long considered that such systems do not exist.[3][4] Particularly, males and hermaphrodites have to have the same fitness, in other words the same number of offspring, in order to be maintained. However, males only have offspring by fertilizing eggs or ovules of hermaphrodites, while hermaphrodites have offspring both through fertilizing eggs or ovules of other hermaphrodites and their own ovules. This means that all else being equal, males have to fertilize twice as many eggs or ovules as hermaphrodites to make up for the lack of female reproduction.[5][6]

Androdioecy can evolve either from dioecious ancestors through the invasion of hermaphrodites or from hermaphroditic ancestors through the invasion of males. The ancestral state is important because conditions under which androdioecy can evolve differ significantly.

Androdioecy with dioecious ancestry

In roundworms, clam shrimp, tadpole shrimp and cancrid shrimps, androdioecy has evolved from dioecy. In these systems, hermaphrodites can only fertilize their own eggs (self-fertilize) and do not mate with other hermaphrodites. Males are the only means of outcrossing. Hermaphrodites may be beneficial in colonizing new habitats, because a single hermaphrodite can generate many other individuals.[7] In the well-studied roundworm Caenorhabditis elegans, males are very rare and only occur in populations that are in bad condition or stressed.[8]

Androdioecy with hermaphroditic ancestry

In animals, corals (phyla Cnidaria) and barnacles (Subphyla Crustacea), androdioecy has evolved from hermaphroditism. Many plants self-fertilize, and males may be sustained in a population when inbreeding depression is severe because males guarantee outcrossing.

Androdioecious species

Despite their unlikely evolution, 115 androdioecious animal and about 50 androdioecious plant species are known.[2][9] These species include

Anthozoa (Corals)

  • Goniastra australensis
  • Stylophora pistillata

Nematoda (Roundworms)

Rhabditidae (Order Rhabditida)
  • Caenorhabditis briggsae
  • Caenorhabditis elegans[8]
  • Caenorhabditis sp. 11
  • Oscheius myriophila
  • Oscheius dolchura
  • Oscheius tipulae
  • Oscheius guentheri
  • Rhabditis rainai
  • Rhabditis sp. (AF5)
  • Rhabdias nigrovenosum
  • Rhabdias rubrovenosa
  • Rhabdias ranae
  • Entomelas entomelas
Diplogastridae (Order Rhabditida)
  • Allodiplogaster sudhausi[10]
  • Diplogasteroides magnus[11]
  • Levipalatum texanum[12]
  • Pristionchus boliviae[13]
  • Pristionchus fissidentatus[14]
  • Pristionchus maupasi[15]
  • Pristionchus mayeri[13]
  • Pristionchus pacificus
  • Pristionchus triformis[16]
  • Sudhausia aristotokia[17]
  • Sudhausia crassa[17]
Steinernematidae (Order Rhabditida)
  • Steinernema hermaphroditum
Allanotnematidae (Order Rhabditida)
  • Allantonema mirabile
  • Bradynema rigidum
Dorylaimida
  • Dorylaimus liratus

Nemertea (Ribbon worms)

  • Prostoma eilhardi

Arthropoda

Clam shrimp
  • Eulimnadia texana[18]
  • Eulimnadia africana
  • Eulimnadia agassizii
  • Eulimnadia antlei
  • Eulimnadia braueriana
  • Eulimnadia brasiliensis
  • Eulimnadia colombiensis
  • Eulimnadia cylondrova
  • Eulimnadia dahli
  • Eulimnadia diversa
  • Eulimnadia feriensis
  • Eulimnadia follisimilis
  • Eulimnadia thompsoni
  • Eulimnadia sp. A
  • Eulimnadia sp. B
  • Eulimnadia sp. C
Tadpole shrimp
  • Triops cancriformis[19]
  • Triops newberryi
  • Triops longicaudatus
Barnacles
  • Paralepas klepalae
  • Paralepas xenophorae
  • Koleolepas avis
  • Koleolepas tinkeri
  • Ibla quadrivalvis
  • Ibla cumingii
  • Ibla idiotica
  • Ibla segmentata
  • Calantica studeri
  • Calantica siemensi
  • Calantica spinosa
  • Calantica villosa
  • Arcoscalpellum sp.
  • Euscalpellum squamuliferum
  • Scalpellum peronii
  • Scalpellum scalpellum
  • Scalpellum vulgare
  • Scillaelepas arnaudi
  • Scillaelepas bocquetae
  • Scillaelepas calyculacilla
  • Scillaelepas falcate
  • Scillaelepas fosteri
  • Smilium hastatum
  • Smilium peronii
  • Chelonibia patula[20]
  • Chelonibia testudinaria[21]
  • Bathylasma alearum[22]
  • Bathylasma corolliforme
  • Conopea galeata[23]
  • Conopea calceola[23]
  • Conopea merrilli[23]
  • Solidobalanus masignotus[24]
  • Tetrapachylasma trigonum
  • Megalasma striatum
  • Octolasmis warwickii[25]
Lysmata
  • Lysmata wurdemanni
  • Lysmata amboinensis
  • Lysmata californica
  • Lysmata bahia
  • Lysmata intermedia
  • Lysmata grabhami
  • Lysmata seticaudata
  • Lysmata nilita
  • Lysmata hochi
  • Lysmata nayaritensis
  • Lysmata rafa
  • Lysmata boggessi
  • Lysmata ankeri
  • Lysmata pederseni
  • Lysmata debelius
  • Lysmata galapaguensis
  • Lysmata cf. trisetacea
Insects
  • Icerya bimaculata
  • Icerya purchasi
  • Crypticerya zeteki

Annelida (Ringed worms)

  • Salvatoria clavata
  • Ophryotrocha gracilis
  • Ophryotrocha hartmanni
  • Ophryotrocha diadema
  • Ophryotrocha bacci
  • Ophryotrocha maculata
  • Ophryotrocha socialis

Chordata

  • Kryptolebias marmoratus[26]
  • Serranus fasciatus
  • Serranus baldwini

Plants

  • Acer sp. (Maple)[27]
  • Castilla elastica[28]
  • Culcita macrocarpa
  • Datisca glomerata (Durango root)
  • Fraxinus lanuginosa (Japanese Ash)
  • Fraxinus ornus
  • Fuchsia microphylla
  • Gagea serotina
  • Mercurialis annua (Annual mercury)[29]
  • Neobuxbaumia mezcalaensis[30]
  • Nephelium lappaceum (Rambutan)
  • Panax trifolius (Ginseng)
  • Oxalis suksdorfii
  • Phillyrea angustifolia
  • Phillyrea latifolia
  • Ricinocarpus pinifolius[31]
  • Sagittaria lancifolia (sub-androdioecy)[32]
  • Saxifraga cernua
  • Schizopepon bryoniaefolius
  • Spinifex littoreus
  • Ulmus minor[33]

See also

  • Gynodioecy
  • Plant sexuality

References

1. ^{{cite journal|author =Pannell, JR. |title=The evolution and maintenance of androdioecy|journal=Annual Review of Ecology and Systematics|volume=33| pages=397–425|year=2002 | doi=10.1146/annurev.ecolsys.33.010802.150419}}
2. ^{{cite journal | last1 = Weeks | first1 = SC | year = 2012 | title = The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia | url = | journal = Evolution | volume = 66 | issue = 12| pages = 3670–3686 | doi = 10.1111/j.1558-5646.2012.01714.x | pmid=23206127}}
3. ^{{cite journal | last1 = Charlesworth | first1 = D | year = 1984 | title = Androdioecy and the evolution of dioecy | url = | journal = Biological Journal of the Linnean Society | volume = 22 | issue = 4| pages = 333–348 | doi=10.1111/j.1095-8312.1984.tb01683.x}}
4. ^Darwin C. 1877. The different forms of flowers and plants of the same species. New York: Appleton.
5. ^{{cite journal | last1 = Lloyd | first1 = DG | year = 1975 | title = The maintenance of gynodioecy and androdioecy in angiosperms | url = | journal = Genetica | volume = 45 | issue = 3| pages = 325–339 | doi=10.1007/bf01508307}}
6. ^{{cite journal | last1 = Charlesworth | first1 = B | last2 = Charlesworth | first2 = D | year = 1978 | title = A Model for the Evolution of Dioecy and Gynodioecy | url = | journal = The American Naturalist | volume = 112 | issue = 988| pages = 975–997 | doi=10.1086/283342}}
7. ^{{cite journal | last1 = Pannell | first1 = J | year = 2000 | title = A hypothesis for the evolution of androdioecy: the joint influence of reproductive assurance and local mate competition in a metapopulation | doi = 10.1023/A:1011082827809 | journal = Evolutionary Ecology | volume = 14 | issue = 3| pages = 195–211 }}
8. ^{{cite journal | last1 = Stewart | first1 = AD | last2 = Phillips | first2 = PC | year = 2002 | title = Selection and maintenance of androdioecy in Caenorhabditis elegans | url = | journal = Genetics | volume = 160 | issue = 3| pages = 975–982 }}
9. ^{{cite journal | last1 = Weeks | first1 = SC | last2 = Benvenuto | first2 = C | last3 = Reed | first3 = SK | year = 2006 | title = When males and hermaphrodites coexist: a review of androdioecy in animals | url = | journal = Integrative and Comparative Biology | volume = 46 | issue = 4| pages = 449–464 | doi=10.1093/icb/icj048| pmid = 21672757 }}
10. ^{{cite journal |author =Fürst von Lieven A |year=2008 |title=Koerneria sudhausi n. sp. (Nematoda: Diplogastridae); a hermaphroditic diplogastrid with an egg shell formed by zygote and uterine components |journal=Nematology |volume=10 |issue=1 |pages=27–45 |doi=10.1163/156854108783360087}}
11. ^{{cite journal |vauthors=Kiontke K, Manegold A, Sudhaus W |year=2001 |title=Redescription of Diplogasteroides nasuensis Takaki, 1941 and D. magnus Völk, 1950 (Nematoda: Diplogastrina) associated with Scarabaeidae (Coleoptera) |journal=Nematology |volume=3 |issue=8 |pages=817–832 |doi=10.1163/156854101753625317}}
12. ^{{cite journal |vauthors=Ragsdale EJ, Kanzaki N, Sommer RJ |year=2014 |title=Levipalatum texanum n. gen., n. sp. (Nematoda: Diplogastridae), an androdioecious species from the south-eastern USA |journal=Nematology |volume=16 |issue=6 |pages=695–709 |doi=10.1163/15685411-00002798}}
13. ^{{cite journal |vauthors=Kanzaki N, Ragsdale EJ, Herrmann M, Susoy V, Sommer RJ |year=2013 |title=Two androdioecious and one dioecious new species of Pristionchus (Nematoda: Diplogastridae): new reference points for the evolution of reproductive mode |journal=Journal of Nematology |volume=45 |issue=3 |pages=172–194 |pmc=3792836 |pmid=24115783}}
14. ^{{cite journal |vauthors=Kanzaki N, Ragsdale EJ, Herrmann M, Sommer RJ |year=2012 |title=Two new species of Pristionchus (Rhabditida: Diplogastridae): P. fissidentatus n. sp. from Nepal and La Réunion Island and P. elegans n. sp. from Japan |journal=Journal of Nematology |volume=44 |issue=1 |pages=80–91 |pmc=3593256 |pmid=23483847}}
15. ^{{cite journal |author =Potts FA |year=1908 |title=Sexual phenomena in the free-living nematodes |journal=Proceedings of the Cambridge Philosophical Society |volume=14 |pages=373–375}}
16. ^{{cite journal |vauthors=Ragsdale EJ, Kanzaki N, Röseler W, Herrmann M, Sommer RJ |year=2013 |title=Three new species of Pristionchus (Nematoda: Diplogastridae) show morphological divergence through evolutionary intermediates of a novel feeding-structure polymorphism |journal=Zoological Journal of the Linnean Society |volume=168 |issue=4 |pages=671–698 |doi=10.1111/zoj.12041}}
17. ^{{cite journal |vauthors=Hermmann M, Ragsdale EJ, Kanzaki N, Sommer RJ |year=2013 |title=Sudhausia aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae): viviparous new species with precocious gonad development |journal=Nematology |volume=15 |issue=8 |pages=1001–1020|doi=10.1163/15685411-00002738 }}
18. ^{{cite journal |author1=Vicky G. Hollenbeck |author2=Stephen C. Weeks |author3=William R. Gould |author4=Naida Zucker |year=2002 |title=Maintenance of androdioecy in the freshwater shrimp Eulimnadia texana: sexual encounter rates and outcrossing success |journal=Behavioral Ecology |volume=13 |issue=4 |pages=561–570 |doi=10.1093/beheco/13.4.561 }}
19. ^{{cite journal | last1 = Zierold | first1 = T | last2 = Hanfling | first2 = B | last3 = Gómez | first3 = A | year = 2007 | title = Recent evolution of alternative reproductive modes in the'living fossil'Triops cancriformis | journal = BMC Evolutionary Biology | volume = 7 | issue = 1| page = 161 | doi=10.1186/1471-2148-7-161 | pmid=17854482 | pmc=2075510}}
20. ^{{cite journal | last1 = Crisp | first1 = DJ | year = 1983 | title = Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male | url = | journal = Marine Biology Letters | volume = 4 | issue = | pages = 281–294 }}
21. ^{{cite journal | last1 = Zardus | first1 = JD | last2 = Hadfield | first2 = MG | year = 2004 | title = Larval Development and Complemental Males in Chelonibia testudinaria, a Barnacle Commensal with Sea Turtles | url = | journal = Journal of Crustacean Biology | volume = 24 | issue = 3| pages = 409–421 | doi=10.1651/c-2476}}
22. ^{{cite journal | last1 = Foster | first1 = BA | year = 1983 | title = Complemental males in the barnacle Bathylasma alearum (cirripedia, pachylasmatidae) | url = | journal = Mem. Aus. Mus | volume = 18 | issue = 12| pages = 133–140 | doi=10.3853/j.0067-1967.18.1984.379}}
23. ^{{cite journal | last1 = McLaughlin | first1 = PA | last2 = Henry | first2 = DP | year = 1972 | title = Comparative Morphology of Complemental Males in Four Species of Balanus (Cirripedia Thoracica) | url = | journal = Crustaceana | volume = 22 | issue = 1| pages = 13–30 | doi=10.1163/156854072x00642}}
24. ^{{cite journal | last1 = Henry | first1 = DP | last2 = McLaughlin | first2 = PA | year = 1967 | title = A Revision of the Subgenus Solidobalanus Hoek (Cirripedia Thoracica) including a Description of a New Species with Complemental Males | url = | journal = Crustaceana | volume = 12 | issue = 1| pages = 43–58 | doi=10.1163/156854067x00693}}
25. ^{{cite journal | last1 = Yusa | first1 = Y | last2 = Takemura | first2 = M | last3 = Miyazaki | first3 = K | last4 = Watanabe | first4 = T | last5 = Yamato | first5 = S | year = 2010 | title = Dwarf Males of Octolasmis warwickii (Cirripedia: Thoracica): The First Example of Coexistence of Males and Hermaphrodites in the Suborder Lepadomorpha | doi = 10.1086/bblv218n3p259 | journal = The Biological Bulletin | volume = 218 | issue = 3| pages = 259–265 }}
26. ^{{cite journal|author =Mackiewicz |title=Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite|journal=Proc Natl Acad Sci USA|volume=103| pages=9924–9928|year=2006 | doi= 10.1073/pnas.0603847103|pmid=16785430|last2=Tatarenkov|first2=A|last3=Taylor|first3=DS|last4=Turner|first4=BJ|last5=Avise|first5=JC|issue=26|pmc=1502555|display-authors=etal}}
27. ^Gleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioecy in Acer" New Phytologist 165(2):633-640. doi=10.1111/j.1469-8137.2004.01242.x
28. ^{{cite journal | last1 = Sakai | first1 = S | year = 2001 | title = Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest | url = | journal = American Journal of Botany | volume = 88 | issue = 9| pages = 1527–1534 | doi=10.2307/3558396 | pmid=21669685| jstor = 3558396 }}
29. ^{{cite journal|author =Pannell J |title=Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae)|journal=Biological Journal of the Linnean Society|volume=61| pages=95–116|year=1997 | doi= 10.1111/j.1095-8312.1997.tb01779.x}}
30. ^{{cite journal | last1 = Valiente-Banuet | first1 = A | last2 = Rojas-Martínez | first2 = A | last3 = Del Coro | first3 = Arizmendi M | last4 = Dávila | first4 = P | year = 1997 | title = Pollination biology of two columnar Cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico | url = | journal = American Journal of Botany | volume = 84 | issue = 4| pages = 452–455 | doi=10.2307/2446020| jstor = 2446020 }}
31. ^Thomson JD, Shivanna KR, Kenrick J and Knox RB. 1989" American Journal of Botany 76 (7):1048-1059
32. ^{{cite journal | last1 = Muenchow | first1 = G | year = 1998 | title = Subandrodioecy and male fitness in Sagittaria lancifolia subsp. lancifolia (Alismataceae) | url = | journal = American Journal of Botany | volume = 85 | issue = 4| pages = 513–520 | doi=10.2307/2446435| jstor = 2446435 }}
33. ^{{cite journal | last1 = López-Almansa | first1 = JC | last2 = Pannell | first2 = JR | last3 = Gil | first3 = L | year = 2003 | title = Female sterility in Ulmus minor (Ulmaceae): a hypothesis invoking the cost of sex in a clonal plant | url = | journal = American Journal of Botany | volume = 90 | issue = 4| pages = 603–609 | doi=10.3732/ajb.90.4.603 | pmid=21659155}}

External links

  • {{cite journal | last1 = Ishida | first1 = Kiyoshi | last2 = Hiura | first2 = Tsutom | year = 1998 | title = Pollen Fertility and Flowering Phenology in an Androdioecious Tree, Fraxinus lanuginosa (Oleaceae), in Hokkaido, Japan| url = | journal = International Journal of Plant Sciences | volume = 159 | issue = 6| pages = 941–947 | doi=10.1086/314088}}
  • {{cite journal | last1 = Pennisi | first1 = Elizabeth | year = 2006| title = Sex and the Single Killifish | url = http://www3.uakron.edu/biology/science06.pdf | journal = Science | volume = 313 | issue = 5792| page = 2006 | doi = 10.1126/science.313.5792.1381 | pmid = 16959986 | access-date = 2008-01-25 | archive-url = https://web.archive.org/web/20081001223411/http://www3.uakron.edu/biology/science06.pdf | archive-date = 2008-10-01 | dead-url = yes | df = }}
  • Diana Wolf. 'Breeding systems: Evolution of androdioecy'

2 : Biology of gender|Mating systems

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 11:15:21