请输入您要查询的百科知识:

 

词条 Andromeda–Milky Way collision
释义

  1. Certainty

  2. Stellar collisions

  3. Black hole collisions

  4. Fate of the Solar System

  5. Possible triggered stellar events

  6. Merger remnant

  7. See also

  8. References

  9. External links

The Andromeda–Milky Way collision is a galactic collision predicted to occur in about 3.75 billion years between two galaxies in the Local Group—the Milky Way (which contains the Solar System and Earth) and the Andromeda Galaxy.[1][2][3][4] The stars involved are sufficiently far apart that it is improbable that any of them will individually collide.[5] Some stars will be ejected from the resulting galaxy, nicknamed Milkomeda or Milkdromeda.

Certainty

The Andromeda Galaxy is approaching the Milky Way at about {{convert|110|km/s}}[2][6] as indicated by blueshift. However, the lateral velocity is very difficult to measure with a precision to draw reasonable conclusions: a lateral speed of only 7.7 km/s would mean that the Andromeda Galaxy is moving toward a point 177,800 light-years to the side of the Milky Way ((7.7 km/s) / (110 km/s) × (2,540,000 ly)), and such a speed over an eight-year timeframe amounts to only 1/3,000th of a Hubble Space Telescope pixel (Hubble's resolution≈0.05 arcsec: (7.7 km/s)/(300,000 km/s)×(8 y)/(2,540,000 ly)×180°/π×3600 = 0.000017 arcsec). Until 2012, it was not known whether the possible collision was definitely going to happen or not.[8] In 2012, researchers concluded that the collision is sure using Hubble to track the motion of stars in Andromeda between 2002 and 2010 with sub-pixel accuracy.[1][2] Andromeda's tangential or sideways velocity with respect to the Milky Way was found to be much smaller than the speed of approach and therefore it is expected that it will directly collide with the Milky Way in around four billion years.

Such collisions are relatively common, considering galaxies' long lifespans. Andromeda, for example, is believed to have collided with at least one other galaxy in the past,[7] and several dwarf galaxies such as Sgr dSph are currently colliding with the Milky Way and being merged into it.

The studies also suggest that M33, the Triangulum Galaxy—the third-largest and third-brightest galaxy of the Local Group—will participate in the collision event, too. Its most likely fate is to end up orbiting the merger remnant of the Milky Way and Andromeda galaxies and finally to merge with it in an even more distant future. However, a collision with the Milky Way, before it collides with the Andromeda Galaxy, or an ejection from the Local Group cannot be ruled out.[8]

Stellar collisions

While the Andromeda Galaxy contains about 1 trillion ({{10^|12}}) stars and the Milky Way contains about 300 billion (3{{e|11}}), the chance of even two stars colliding is negligible because of the huge distances between the stars. For example, the nearest star to the Sun is Proxima Centauri, about {{convert|4.2|ly|km mi}} or 30 million (3{{e|7}}) solar diameters away.

To visualize that scale, if the Sun were a ping-pong ball, Proxima Centauri would be a pea about {{convert|1100|km|abbr=on}} away, and the Milky Way would be about 30 million km ({{convert|30|km|disp=output number only}} million mi) wide. Although stars are more common near the centers of each galaxy, the average distance between stars is still 160 billion (1.6{{e|11}}) km (100 billion mi). That is analogous to one ping-pong ball every {{convert|3.2|km|abbr=on}}. Thus, it is extremely unlikely that any two stars from the merging galaxies would collide.[5]

Black hole collisions

The Milky Way and Andromeda galaxies each contain a central supermassive black hole (SMBH), these being Sagittarius A* (ca. {{Val|3.6|e=6|ul=solar mass}}) and an object within the P2 concentration of Andromeda's nucleus ({{Val|2|p=1–|e=8|u=solar mass}}). These black holes will converge near the centre of the newly formed galaxy over a period that may take millions of years, due to a process known as dynamical friction: As the SMBHs move relative to the surrounding cloud of much less massive stars, gravitational interactions lead to a net transfer of orbital energy from the SMBHs to the stars, causing the stars to be "slingshotted" into higher-radius orbits, and the SMBHs to "sink" toward the galactic core. When the SMBHs come within one light-year of one another, they will begin to strongly emit gravitational waves that will radiate further orbital energy until they merge completely. Gas taken up by the combined black hole could create a luminous quasar or an active galactic nucleus, releasing as much energy as 100 million supernova explosions.[9] As of 2006, simulations indicated that the Sun might be brought near the centre of the combined galaxy, potentially coming near one of the black holes before being ejected entirely out of the galaxy.[10] Alternatively, the Sun might approach one of the black holes a bit closer and be torn apart by its gravity. Parts of the former Sun would be pulled into the black hole.[11]

Fate of the Solar System

{{see also|Formation and evolution of the Solar System#Galactic collision and planetary disruption}}

Two scientists with the Harvard–Smithsonian Center for Astrophysics stated that when, and even whether, the two galaxies collide will depend on Andromeda's transverse velocity.[3] Based on current calculations they predict a 50% chance that in a merged galaxy, the Solar System will be swept out three times farther from the galactic core than its current distance.[3] They also predict a 12% chance that the Solar System will be ejected from the new galaxy sometime during the collision.[12][13] Such an event would have no adverse effect on the system and the chances of any sort of disturbance to the Sun or planets themselves may be remote.[12][13]

Excluding planetary engineering, by the time the two galaxies collide the surface of the Earth will have already become far too hot for liquid water to exist, ending all terrestrial life; that is currently estimated to occur in about 3.75 billion years due to gradually increasing luminosity of the Sun (it will have risen by 35–40% above the current luminosity).[14][15]

Possible triggered stellar events

When two spiral galaxies collide, the hydrogen present on their disks is compressed, producing strong star formation as can be seen on interacting systems like the Antennae Galaxies. In the case of the Andromeda–Milky Way collision, it is believed that there will be little gas remaining in the disks of both galaxies, so the mentioned starburst will be relatively weak, though it still may be enough to form a quasar.[13]

Merger remnant

The galaxy product of the collision has been nicknamed Milkomeda or Milkdromeda.[16] According to simulations, this object will look like a giant elliptical galaxy, but with a centre showing less stellar density than current elliptical galaxies.[13] It is, however, possible the resulting object will be a large disk galaxy, depending on the amount of remaining gas in the Milky Way and Andromeda.[17]

In the far future, roughly 150 billion years from now, the remaining galaxies of the Local Group will coalesce into this object, that being the next evolutionary stage of the local group of galaxies.[18]

See also

  • NGC 2207 and IC 2163

References

1. ^{{cite journal|author1=Sangmo Tony Sohn|author2=Jay Anderson|author3=Roeland van der Marel|title=The M31 velocity vector. I. Hubble Space Telescope proper-motion measurements|journal=The Astrophysical Journal|volume=753|issue=1|pages=7|date=Jul 1, 2012|doi=10.1088/0004-637X/753/1/7|arxiv = 1205.6863 |bibcode = 2012ApJ...753....7S }}
2. ^{{Cite journal |last=Cowen |first=Ron |doi=10.1038/nature.2012.10765 |title = Andromeda on collision course with the Milky Way |journal=Nature |date=31 May 2012 |url=http://www.nature.com/news/andromeda-on-collision-course-with-the-milky-way-1.10765}}
3. ^{{cite web |first=Hazel |last=Muir |publisher=New Scientist |date=2007-05-14 |title=Galactic merger to 'evict' Sun and Earth |url=https://www.newscientist.com/article/dn11852-galactic-merger-to-evict-sun-and-earth.html#.VDVdDvl_uVB |accessdate=2014-10-07 |archiveurl=https://web.archive.org/web/20140420022909/http://www.newscientist.com/article/dn11852-galactic-merger-to-evict-sun-and-earth.html#.VDVeCfl_uVA |archivedate=20 April 2014 |deadurl=no}}
4. ^Loeb, Abraham; Cox, TJ. (June 2008). Astronomy. p. 28.
5. ^{{cite web |url=http://www.nasa.gov/mission_pages/hubble/science/milky-way-collide.html |author=NASA |title=NASA's Hubble Shows Milky Way is Destined for Head-On Collision |work=NASA |date=2012-05-31 |accessdate=2012-10-13 |archiveurl=https://web.archive.org/web/20140701085917/http://www.nasa.gov/mission_pages/hubble/science/milky-way-collide.html |archivedate=1 July 2014}}
6. ^{{Cite web|url=https://science.nasa.gov/science-news/science-at-nasa/2012/31may_andromeda|title=Astronomers Predict Titanic Collision: Milky Way vs. Andromeda {{!}} Science Mission Directorate|website=science.nasa.gov|language=en|access-date=2018-10-13}}
7. ^{{cite web |publisher=MSNBC |date=2007-01-29 |title=Andromeda involved in galactic collision |url=http://www.msnbc.msn.com/id/16872449/ |access-date=2014-10-07 |archiveurl=https://web.archive.org/web/20140831160840/http://www.sciencedaily.com/releases/2009/12/091203101426.htm |archivedate=6 June 2013 |deadurl=no}}
8. ^{{cite journal |first1=Roeland P. |last1=van der Marel |first2=Gurtina |last2=Besla |first3=T.J. |last3=Cox |first4=Sangmo Tony |last4=Sohn |first5=Jay |last5=Anderson |title=The M31 Velocity Vector. III. Future Milky Way-M31-M33 Orbital Evolution, Merging, and Fate of the Sun |journal=The Astrophysical Journal |date=1 July 2012 |volume=753 |issue=9 |pages=9 |doi=10.1088/0004-637X/753/1/9 |arxiv=1205.6865 |bibcode=2012ApJ...753....9V }}
9. ^Denis Overbye, “More Evidence for Coming Black Hole Collision,” The New York Times, (September 16, 2015), https://www.nytimes.com/2015/09/22/science/space/more-evidence-for-coming-black-hole-collision.html
10. ^{{cite journal |url=http://acme.highpoint.edu/~afuller/PHY-1050/resources/GreatMilkyWayAndromedaCollision.pdf |title=The Great Milky Way-Andromeda Collision |first=John |last=Dubinski |journal=Sky & Telescope |date=October 2006 |pages=30–36}}
11. ^Peter Jonkler, “Unique SOS Signal from Torn Apart Star Points to Medium-Size Black Hole,” Astrophysics, (November 6, 2013, Radboud University), http://www.ru.nl/astrophysics/news-agenda/news/@924091/unique-sos-signal/
12. ^{{cite web|title=When Our Galaxy Smashes Into Andromeda, What Happens to the Sun?|author=Cain, Fraser | work=Universe Today|url=http://www.universetoday.com/2007/05/10/when-our-galaxy-smashes-into-andromeda-what-happens-to-the-sun/|date=2007|accessdate=2007-05-16| archiveurl= https://web.archive.org/web/20070517021426/http://www.universetoday.com/2007/05/10/when-our-galaxy-smashes-into-andromeda-what-happens-to-the-sun/| archivedate= 17 May 2007 | deadurl= no}}
13. ^{{cite journal|title=The Collision Between The Milky Way And Andromeda | author=Cox, T. J. | author2=Loeb, Abraham | journal=Monthly Notices of the Royal Astronomical Society | arxiv=0705.1170 | date=2008 | doi=10.1111/j.1365-2966.2008.13048.x|volume=386|issue=1 | pages=461–474 | bibcode=2008MNRAS.386..461C}}
14. ^{{cite journal |last=Schröder |first=K.-P. |last2=Smith |first2=R. C. |title=Distant future of the Sun and Earth revisited |journal=Monthly Notices of the Royal Astronomical Society |volume=386 |issue=1 |page=155 |date=2008 |doi=10.1111/j.1365-2966.2008.13022.x |arxiv=0801.4031 |bibcode=2008MNRAS.386..155S}}
15. ^{{cite news |first=D. |last=Carrington |title=Date set for desert Earth |url=http://news.bbc.co.uk/1/hi/sci/tech/specials/washington_2000/649913.stm |publisher=BBC News |accessdate=2007-03-31 | date=2000-02-21 |archiveurl=https://web.archive.org/web/20140712074821/http://news.bbc.co.uk/2/hi/sci/tech/specials/washington_2000/649913.stm |archivedate=9 July 2014 }}
16. ^{{Cite web|title = Milkomeda, Our Future Home|url = https://www.cfa.harvard.edu/news/su200822|accessdate = 2015-09-27}}
17. ^{{cite journal | author=Junko Ueda | title=Cold molecular gas in merger remnants. I. Formation of molecular gas disks | journal=The Astrophysical Journal Supplement Series | volume=214 | issue=1 | pages=1 | bibcode= 2014ApJS..214....1U | doi=10.1088/0067-0049/214/1/1|display-authors=etal|arxiv = 1407.6873 | year=2014 }}
18. ^{{cite journal | author= Fred C. Adams | author2= Gregory Laughlin | title=A dying universe: the long-term fate and evolution of astrophysical objects | journal=Reviews of Modern Physics | date=1997 | volume=69 | issue=2 | pages=337–372 | bibcode=1997RvMP...69..337A | doi=10.1103/RevModPhys.69.337 | arxiv=astro-ph/9701131 }}

External links

{{Commons category}}
  • {{cite web|last=Merrifield|first=Michael|title=Milky Way vs Andromeda: The ultimate head-on crash|url=http://www.deepskyvideos.com/videos/other/andromeda_collision.html|work=Deep Space Videos|publisher=Brady Haran}}
{{Andromeda galaxy}}{{Milky Way}}{{DEFAULTSORT:Andromeda-Milky Way collision}}

7 : Interacting galaxies|Milky Way|Andromeda Galaxy|Local Group|Hypothetical impact events|Articles containing video clips|Future

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 15:33:33