请输入您要查询的百科知识:

 

词条 Binary combinatory logic
释义

  1. Definition

     Syntax  Semantics 

  2. See also

  3. References

  4. External links

Binary combinatory logic (BCL) is a formulation of combinatory logic using only the symbols 0 and 1.[1] BCL has applications in the theory of program-size complexity (Kolmogorov complexity).[1][2]

Definition

Syntax

Backus–Naur form:

::= 00 | 01 | 1

Semantics

The denotational semantics of BCL may be specified as follows:

  • [ 00 ] == K
  • [ 01 ] == S
  • [ 1 ] == ( [] [] )

where "[...]" abbreviates "the meaning of ...". Here K and S are the KS-basis combinators, and ( ) is the application operation, of combinatory logic. (The prefix 1 corresponds to a left parenthesis, right parentheses being unnecessary for disambiguation.)

Thus there are four equivalent formulations of BCL, depending on the manner of encoding the triplet (K, S, left parenthesis). These are (00, 01, 1) (as in the present version), (01, 00, 1), (10, 11, 0), and (11, 10, 0).

The operational semantics of BCL, apart from eta-reduction (which is not required for Turing completeness), may be very compactly specified by the following rewriting rules for subterms of a given term, parsing from the left:

  •  1100xy  → x
  • 11101xyz → 11xz1yz

where x, y, and z are arbitrary subterms. (Note, for example, that because parsing is from the left, 10000 is not a subterm of 11010000.)

See also

  • Iota and Jot

References

1. ^{{citation|last=Tromp|first=John|title=Randomness and complexity|url=https://tromp.github.io/cl/LC.pdf|year=2007|pages=237–260|contribution=Binary lambda calculus and combinatory logic|publisher=World Sci. Publ., Hackensack, NJ|doi=10.1142/9789812770837_0014|mr=2427553|isbn=978-981-277-082-0|citeseerx=10.1.1.695.3142}}.
2. ^{{citation | last = Devine | first = Sean | doi = 10.3390/e11010085 | issue = 1 | journal = Entropy | mr = 2534819 | pages = 85–110 | title = The insights of algorithmic entropy | volume = 11 | year = 2009}}.

External links

  • [https://tromp.github.io/cl/cl.html John's Lambda Calculus and Combinatory Logic Playground]

2 : Algorithmic information theory|Combinatory logic

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 17:21:02