请输入您要查询的百科知识:

 

词条 Virome
释义

  1. History

  2. Methods of study

  3. Virus hosts

  4. References

{{For|the human virome|Human virome}}Virome refers to the collection of nucleic acids, both RNA and DNA, that make up the viral community associated with a particular ecosystem or holobiont. The word is derived from virus and genome and first used by Forest Rohwer and colleagues to describe viral shotgun metagenomes.[1] All macro-organisms have viromes that include bacteriophage and viruses. Viromes are important in the nutrient and energy cycling,[2] development of immunity,[3] and a major source of genes through lysogenic conversion.[4]

History

Viromes were the first examples of shotgun community sequence,[5] which is now known as metagenomics. In the 2000s, the Rohwer lab sequenced viromes from seawater,[5][6] marine sediments,[7] adult human stool,[8] infant human stool,[9] soil,[10] and blood.[11] This group also performed the first RNA virome with collaborators from the Genomic Institute of Singapore.[12] From these early works, it was concluded that most of the genomic diversity is contained in the global virome and that most of this diversity remains uncharacterized.[13] This view was supported by individual genomic sequencing project, particularly the mycobacterium phage.[14]

Methods of study

In order to study the virome, virus-like particles are separated from cellular components, usually using a combination of filtration, density centrifugation, and enzymatic treatments to get rid of free nucleic acids.[15] The nucleic acids are then sequenced and analyzed using metagenomic methods. Alternatively, there are recent computational methods that use directly metagenomic assembled sequences to discover viruses.[16]

Virus hosts

Viruses are the most abundant biological entities on Earth, but challenges in detecting, isolating, and classifying unknown viruses have prevented exhaustive surveys of the global virome.[17] Over 5 Tb of metagenomic sequence data were used from 3,042 geographically diverse samples to assess the global distribution, phylogenetic diversity, and host specificity of viruses.[17]

In August 2016, over 125,000 partial DNA viral genomes, including the largest phage yet identified, increased the number of known viral genes by 16-fold.[17] A suite of computational methods was used to identify putative host virus connections.[17] The isolate viral host information was projected onto a group, resulting in host assignments for 2.4% of viral groups.[17]

Then the CRISPR–Cas prokaryotic immune system which holds a "library" of genome fragments from phages (proto-spacers) that have previously infected the host.[17] Spacers from isolate microbial genomes with matches to metagenomic viral contigs (mVCs) were identified for 4.4% of the viral groups and 1.7% of singletons.[17] The hypothesis was explored that viral transfer RNA (tRNA) genes originate from their host.[17]

Viral tRNAs identified in 7.6% of the mVCs were matched to isolate genomes from a single species or genus.[17] The specificity of tRNA-based host viral assignment was confirmed by CRISPR–Cas spacer matches showing a 94% agreement at the genus level. These approaches identified 9,992 putative host–virus associations enabling host assignment to 7.7% of mVCs.[17] The majority of these connections were previously unknown, and include hosts from 16 prokaryotic phyla for which no viruses have previously been identified.[17]

Many viruses specialize in infecting related hosts.[17] Viral generalists that infect hosts across taxonomic orders may exist.[17] Most CRISPR spacer matches were from viral sequences to hosts within one species or genus.[17] Some mVCs were linked to multiple hosts from higher taxa. A viral group composed of macs from human oral samples contained three distinct photo-spacers with nearly exact matches to spacers in Actionbacteria and Firmicutes.[17]

In January 2017, the IMG/VR system [18] -the largest interactive public virus database contained 265,000 metagenomic viral sequences and isolate viruses. This number scaled up to over 760,000 in November 2018 (IMG/VR v.2.0) [19]. The IMG/VR systems serve as a starting point for the sequence analysis of viral fragments derived from metagenomic samples.

References

1. ^{{cite journal|last1=McDaniel|first1=L|authorlink2=Mya Breitbart|last2=Breitbart|first2=M|last3=Mobberley|first3=J|last4=Long|first4=A|last5=Haynes|first5=M|last6=Rohwer|first6=F|last7=Paul|first7=JH|title=Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression.|journal=PLOS ONE|date=23 September 2008|volume=3|issue=9|pages=e3263|pmid=18810270|doi=10.1371/journal.pone.0003263|pmc=2533394}}
2. ^{{cite journal|last1=Wegley|first1=L|last2=Edwards|first2=R|last3=Rodriguez-Brito|first3=B|last4=Liu|first4=H|last5=Rohwer|first5=F|title=Metagenomic analysis of the microbial community associated with the coral Porites astreoides.|journal=Environmental Microbiology|date=November 2007|volume=9|issue=11|pages=2707–19|pmid=17922755|doi=10.1111/j.1462-2920.2007.01383.x}}
3. ^{{cite journal|last1=Barr|first1=JJ|last2=Auro|first2=R|last3=Furlan|first3=M|last4=Whiteson|first4=KL|last5=Erb|first5=ML|last6=Pogliano|first6=J|last7=Stotland|first7=A|last8=Wolkowicz|first8=R|last9=Cutting|first9=AS|last10=Doran|first10=KS|last11=Salamon|first11=P|last12=Youle|first12=M|last13=Rohwer|first13=F|title=Bacteriophage adhering to mucus provide a non-host-derived immunity.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=25 June 2013|volume=110|issue=26|pages=10771–6|pmid=23690590|doi=10.1073/pnas.1305923110|pmc=3696810}}
4. ^{{cite journal|last1=Sharon|first1=I|last2=Battchikova|first2=N|last3=Aro|first3=EM|last4=Giglione|first4=C|last5=Meinnel|first5=T|last6=Glaser|first6=F|last7=Pinter|first7=RY|last8=Breitbart|first8=M|last9=Rohwer|first9=F|last10=Béjà|first10=O|title=Comparative metagenomics of microbial traits within oceanic viral communities.|journal=The ISME Journal|date=July 2011|volume=5|issue=7|pages=1178–90|pmid=21307954|doi=10.1038/ismej.2011.2|pmc=3146289}}
5. ^{{cite journal|last2=Salamon|first2=P|last3=Andresen|first3=B|last4=Mahaffy|first4=JM|last5=Segall|first5=AM|last6=Mead|first6=D|last7=Azam|first7=F|last8=Rohwer|first8=F|date=29 October 2002|title=Genomic analysis of uncultured marine viral communities.|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=99|issue=22|pages=14250–5|doi=10.1073/pnas.202488399|pmc=137870|pmid=12384570|last1=Breitbart|first1=M}}
6. ^{{cite journal|last2=Felts|first2=B|last3=Breitbart|first3=M|last4=Salamon|first4=P|last5=Edwards|first5=RA|last6=Carlson|first6=C|last7=Chan|first7=AM|last8=Haynes|first8=M|last9=Kelley|first9=S|date=November 2006|title=The marine viromes of four oceanic regions.|journal=PLOS Biology|volume=4|issue=11|pages=e368|doi=10.1371/journal.pbio.0040368|pmc=1634881|pmid=17090214|last1=Angly|first1=FE|last10=Liu|first10=H|last11=Mahaffy|first11=JM|last12=Mueller|first12=JE|last13=Nulton|first13=J|last14=Olson|first14=R|last15=Parsons|first15=R|last16=Rayhawk|first16=S|last17=Suttle|first17=CA|last18=Rohwer|first18=F}}
7. ^{{cite journal|last2=Felts|first2=B|last3=Kelley|first3=S|last4=Mahaffy|first4=JM|last5=Nulton|first5=J|last6=Salamon|first6=P|last7=Rohwer|first7=F|date=22 March 2004|title=Diversity and population structure of a near-shore marine-sediment viral community.|journal=Proceedings of the Royal Society B: Biological Sciences|volume=271|issue=1539|pages=565–74|doi=10.1098/rspb.2003.2628|pmc=1691639|pmid=15156913|last1=Breitbart|first1=M}}
8. ^{{cite journal|last2=Hewson|first2=I|last3=Felts|first3=B|last4=Mahaffy|first4=JM|last5=Nulton|first5=J|last6=Salamon|first6=P|last7=Rohwer|first7=F|date=October 2003|title=Metagenomic analyses of an uncultured viral community from human feces.|journal=Journal of Bacteriology|volume=185|issue=20|pages=6220–3|doi=10.1128/jb.185.20.6220-6223.2003|pmc=225035|pmid=14526037|last1=Breitbart|first1=M}}
9. ^{{cite journal|last2=Haynes|first2=M|last3=Kelley|first3=S|last4=Angly|first4=F|last5=Edwards|first5=RA|last6=Felts|first6=B|last7=Mahaffy|first7=JM|last8=Mueller|first8=J|last9=Nulton|first9=J|date=June 2008|title=Viral diversity and dynamics in an infant gut.|journal=Research in microbiology|volume=159|issue=5|pages=367–73|doi=10.1016/j.resmic.2008.04.006|pmid=18541415|last1=Breitbart|first1=M|last10=Rayhawk|first10=S|last11=Rodriguez-Brito|first11=B|last12=Salamon|first12=P|last13=Rohwer|first13=F}}
10. ^{{cite journal|last2=Breitbart|first2=M|last3=Nulton|first3=J|last4=Salamon|first4=P|last5=Lozupone|first5=C|last6=Jones|first6=R|last7=Robeson|first7=M|last8=Edwards|first8=RA|last9=Felts|first9=B|date=November 2007|title=Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil.|journal=Applied and Environmental Microbiology|volume=73|issue=21|pages=7059–66|doi=10.1128/aem.00358-07|pmc=2074941|pmid=17827313|last1=Fierer|first1=N|last10=Rayhawk|first10=S|last11=Knight|first11=R|last12=Rohwer|first12=F|last13=Jackson|first13=RB}}
11. ^{{cite journal|last2=Rohwer|first2=F|date=November 2005|title=Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing.|journal=BioTechniques|volume=39|issue=5|pages=729–36|doi=10.2144/000112019|pmid=16312220|last1=Breitbart|first1=M}}
12. ^{{cite journal|last2=Breitbart|first2=M|last3=Lee|first3=WH|last4=Run|first4=JQ|last5=Wei|first5=CL|last6=Soh|first6=SW|last7=Hibberd|first7=ML|last8=Liu|first8=ET|last9=Rohwer|first9=F|date=January 2006|title=RNA viral community in human feces: prevalence of plant pathogenic viruses.|journal=PLOS Biology|volume=4|issue=1|pages=e3|doi=10.1371/journal.pbio.0040003|pmc=1310650|pmid=16336043|last1=Zhang|first1=T|last10=Ruan|first10=Y}}
13. ^{{cite journal|last2=Rohwer|first2=F|date=June 2005|title=Viral metagenomics.|journal=Nature Reviews. Microbiology|volume=3|issue=6|pages=504–10|doi=10.1038/nrmicro1163|pmid=15886693|last1=Edwards|first1=RA}}
14. ^{{cite journal|date=18 April 2003|title=Global phage diversity.|journal=Cell|volume=113|issue=2|pages=141|doi=10.1016/s0092-8674(03)00276-9|pmid=12705861|last1=Rohwer|first1=F}}
15. ^{{cite journal|last1=Thurber|first1=RV|last2=Haynes|first2=M|last3=Breitbart|first3=M|last4=Wegley|first4=L|last5=Rohwer|first5=F|title=Laboratory procedures to generate viral metagenomes.|journal=Nature Protocols|date=2009|volume=4|issue=4|pages=470–83|pmid=19300441|doi=10.1038/nprot.2009.10}}
16. ^{{cite journal | vauthors = Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC | title = Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data | journal = Nat Protoc | volume = 12 | issue = 8 | pages = 1673–1682 | date = August 2017 | pmid = 28749930 | doi = 10.1038/nprot.2017.063 }}
17. ^10 11 12 13 14 {{cite journal | vauthors = Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC | title = Uncovering Earth's virome | journal = Nature | volume = 536 | issue = 7617 | pages = 425–30 | date = August 2016 | pmid = 27533034 | doi = 10.1038/nature19094 }}
18. ^{{cite journal | vauthors = Paez-Espino D, Chen IA, Palaniappan K, Ratner A, Chu K, Szeto E, Pillay M, Huang J, Markowitz VM, Nielsen T, Huntemann M, K Reddy TB, Pavlopoulos GA, Sullivan MB, Campbell BJ, Chen F, McMahon K, Hallam SJ, Denef V, Cavicchioli R, Caffrey SM, Streit WR, Webster J, Handley KM, Salekdeh GH, Tsesmetzis N, Setubal JC, Pope PB, Liu WT, Rivers AR, Ivanova NN, Kyrpides NC|display-authors = 6 | title = IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses | journal = Nucleic Acids Res. | volume = 45 | issue = D1 | pages = D457–D465 | date = January 2017 | pmid = 27799466 | pmc = 5210529 | doi = 10.1093/nar/gkw1030 }}
19. ^{{cite journal | vauthors = Paez-Espino D, Roux S, Chen IA, Palaniappan K, Ratner A, Chu K, Huntemann M, K Reddy TB, Pons JC, Llabres M, Eloe-Fadrosh EA, Ivanova NN, Kyrpides NC|display-authors = 6 | title = IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes | journal = Nucleic Acids Res. | volume = | issue = | pages = | date = | pmid = | pmc = | doi = 10.1093/nar/gky1127 }}

2 : Virology|Nucleic acids

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/24 4:24:43