词条 | Animal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
| name = Animals | display_parents = 6 | taxon = Animalia | authority = Linnaeus, 1758 | fossil_range = Cryogenian – present, {{Long fossil range |665|0}} | image = File:Animal diversity.png |300px rect 0 0 118 86 Echinoderm rect 0 86 118 172 Cnidaria rect 0 172 118 258 Bivalve rect 0 258 118 344 Tardigrade rect 0 344 118 430 Crustacean rect 0 430 118 516 Arachnid rect 118 0 236 86 Sponge rect 118 86 236 172 Insect rect 118 172 236 258 Mammal rect 118 258 236 344 Bryozoa rect 118 344 236 430 Acanthocephala rect 118 430 236 620 Flatworm rect 236 0 354 86 Cephalopod rect 236 86 354 172 Annelid rect 236 172 354 258 Tunicate rect 236 258 354 344 Fish rect 236 344 354 430 Bird rect 236 430 354 620 Phoronida | image_upright = 1.4 | subdivision_ranks = Superphyla | subdivision ={{Collapse top|title=Major animal taxa |left=yes|padding=0|border=0|border2=0|bg=clear|bg2=clear}}
| synonyms =
}} Animals are multicellular eukaryotic organisms that form the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 millionths of a metre to {{convert|33.6|m|ft}} and have complex interactions with each other and their environments, forming intricate food webs. The category includes humans, but in colloquial use the term animal often refers only to non-human animals. The study of non-human animals is known as zoology. Most living animal species are in the Bilateria, a clade whose members have a bilaterally symmetric body plan. The Bilateria include the protostomes—in which many groups of invertebrates are found, such as nematodes, arthropods, and molluscs—and the deuterostomes, containing the echinoderms and chordates (including the vertebrates). Life forms interpreted as early animals were present in the Ediacaran biota of the late Precambrian. Many modern animal phyla became clearly established in the fossil record as marine species during the Cambrian explosion which began around 542 million years ago. 6,331 groups of genes common to all living animals have been identified; these may have arisen from a single common ancestor that lived 650 million years ago. Aristotle divided animals into those with blood and those without. Carl Linnaeus created the first hierarchical biological classification for animals in 1758 with his Systema Naturae, which Jean-Baptiste Lamarck expanded into 14 phyla by 1809. In 1874, Ernst Haeckel divided the animal kingdom into the multicellular Metazoa (now synonymous with Animalia) and the Protozoa, single-celled organisms no longer considered animals. In modern times, the biological classification of animals relies on advanced techniques, such as molecular phylogenetics, which are effective at demonstrating the evolutionary relationships between animal taxa. Humans make use of many other animal species for food, including meat, milk, and eggs; for materials, such as leather and wool; as pets; and as working animals for power and transport. Dogs have been used in hunting, while many terrestrial and aquatic animals are hunted for sport. Non-human animals have appeared in art from the earliest times and are featured in mythology and religion. EtymologyThe word "animal" comes from the Latin {{wiktlat |animalis}}, meaning having breath, having soul or living being.[1] The biological definition includes all members of the kingdom Animalia.[2] In colloquial usage, as a consequence of anthropocentrism, the term animal is sometimes used nonscientifically to refer only to non-human animals.[3][4][5][6] CharacteristicsAnimals have several characteristics that set them apart from other living things. Animals are eukaryotic and multicellular,[7][8] unlike bacteria, which are prokaryotic, and unlike protists, which are eukaryotic but unicellular. Unlike plants and algae, which produce their own nutrients[9] animals are ">heterotrophic,[8][10] feeding on organic material and digesting it internally.[11] With very few exceptions, animals breathe oxygen and respire aerobically.[12] All animals are motile[13] (able to spontaneously move their bodies) during at least part of their life cycle, but some animals, such as sponges, corals, mussels, and barnacles, later become sessile. The ">blastula is a stage in embryonic development that is unique to most animals,[14] allowing cells to be differentiated into specialised tissues and organs. StructureAll animals are composed of cells, surrounded by a characteristic extracellular matrix composed of collagen and elastic glycoproteins.[15] During development, the animal extracellular matrix forms a relatively flexible framework upon which cells can move about and be reorganised, making the formation of complex structures possible. This may be calcified, forming structures such as shells, bones, and spicules.[16] In contrast, the cells of other multicellular organisms (primarily algae, plants, and fungi) are held in place by cell walls, and so develop by progressive growth.[17] Animal cells uniquely possess the cell junctions called tight junctions, gap junctions, and desmosomes.[18] With few exceptions—in particular, the sponges and placozoans—animal bodies are differentiated into tissues.[19] These include muscles, which enable locomotion, and nerve tissues, which transmit signals and coordinate the body. Typically, there is also an internal digestive chamber with either one opening (as in flatworms) or two openings (as in deuterostomes).[20] Reproduction and development{{see also|Sexual reproduction#Animals|Asexual reproduction#Examples in animals}}Nearly all animals make use of some form of sexual reproduction.[21] They produce haploid gametes by meiosis; the smaller, motile gametes are spermatozoa and the larger, non-motile gametes are ova.[22] These fuse to form zygotes,[23] which develop via mitosis into a hollow sphere, called a blastula. In sponges, blastula larvae swim to a new location, attach to the seabed, and develop into a new sponge.[24] In most other groups, the blastula undergoes more complicated rearrangement.[25] It first invaginates to form a gastrula with a digestive chamber and two separate germ layers, an external ectoderm and an internal endoderm.[26] In most cases, a third germ layer, the mesoderm, also develops between them.[27] These germ layers then differentiate to form tissues and organs.[28] Repeated instances of mating with a close relative during sexual reproduction generally leads to inbreeding depression within a population due to the increased prevalence of harmful recessive traits.[29][30] Animals have evolved numerous mechanisms for avoiding close inbreeding.[31] In some species, such as the splendid fairywren (Malurus splendens), females benefit by mating with multiple males, thus producing more offspring of higher genetic quality.[32] Some animals are capable of asexual reproduction, which often results in a genetic clone of the parent. This may take place through fragmentation; budding, such as in Hydra and other cnidarians; or parthenogenesis, where fertile eggs are produced without mating, such as in aphids.[33][34] EcologyAnimals are categorised into ecological groups depending on how they obtain or consume organic material, including carnivores, herbivores, omnivores, detritivores,[35] and parasites.[36] Interactions between animals form complex food webs. In carnivorous or omnivorous species, predation is a consumer-resource interaction where a predator feeds on another organism (called its prey).[37] Selective pressures imposed on one another lead to an evolutionary arms race between predator and prey, resulting in various anti-predator adaptations.[38][39] Almost all multicellular predators are animals.[40] Some consumers use multiple methods; for example, in parasitoid wasps, the larvae feed on the hosts' living tissues, killing them in the process,[41] but the adults primarily consume nectar from flowers.[42] Other animals may have very specific feeding behaviours, such as hawksbill sea turtles that primarily eat sponges.[43] Most animals rely on the energy produced by plants through photosynthesis. Herbivores eat plant material directly, while carnivores, and other animals on higher trophic levels, typically acquire energy (in the form of reduced carbon) by eating other animals. The carbohydrates, lipids, proteins, and other biomolecules are broken down to allow the animal to grow and to sustain biological processes such as locomotion.[44][45][46] Animals living close to hydrothermal vents and cold seeps on the dark sea floor do not depend on the energy of sunlight.[47] Rather, archaea and bacteria in these locations produce organic matter through chemosynthesis (by oxidizing inorganic compounds, such as methane) and form the base of the local food web.[48] Animals originally evolved in the sea. Lineages of arthropods colonised land around the same time as land plants, probably between 510–471 million years ago during the Late Cambrian or Early Ordovician.[49] Vertebrates such as the lobe-finned fish Tiktaalik started to move on to land in the late Devonian, about 375 million years ago.[50][51] Animals occupy virtually all of earth's habitats and microhabitats, including salt water, hydrothermal vents, fresh water, hot springs, swamps, forests, pastures, deserts, air, and the interiors of animals, plants, fungi and rocks.[52] Animals are however not particularly heat tolerant; very few of them can survive at constant temperatures above {{convert|50|°C|0|abbr=on}}.[53] Only very few species of animals (mostly nematodes) inhabit the most extreme cold deserts of continental Antarctica.[54] DiversityLargest and smallest{{further|Largest organisms|Smallest organisms}}The blue whale (Balaenoptera musculus) is the largest animal that has ever lived, weighing up to 190 metric tonnes and measuring up to {{convert|33.6|m|ft}} long.[55][56][57] The largest extant terrestrial animal is the African bush elephant (Loxodonta africana), weighing up to 12.25 tonnes[55] and measuring up to {{convert|10.67|m|ft}} long.[55] The largest terrestrial animals that ever lived were titanosaur sauropod dinosaurs such as Argentinosaurus, which may have weighed as much as 73 tonnes.[58] Several animals are microscopic; some Myxozoa (obligate parasites within the Cnidaria) never grow larger than 20 µm,[59] and one of the smallest species (Myxobolus shekel) is no more than 8.5 µm when fully grown.[60] Numbers and habitatsThe following table lists estimated numbers of described extant species for the animal groups with the largest numbers of species,[61] along with their principal habitats (terrestrial, fresh water,[62] and marine),[63] and free-living or parasitic ways of life.[64] Species estimates shown here are based on numbers described scientifically; much larger estimates have been calculated based on various means of prediction, and these can vary wildly. For instance, around 25,000–27,000 species of nematodes have been described, while published estimates of the total number of nematode species include 10,000–20,000; 500,000; 10 million; and 100 million.[65] Using patterns within the taxonomic hierarchy, the total number of animal species—including those not yet described—was calculated to be about 7.77 million in 2011.[66][67]{{efn|The application of DNA barcoding to taxonomy further complicates this; a 2016 barcoding analysis estimated a total count of nearly 100,000 insect species for Canada alone, and extrapolated that the global insect fauna must be in excess of 10 million species, of which nearly 2 million are in a single fly family known as gall midges (Cecidomyiidae).[68]}}
Evolutionary origin{{Further |Urmetazoan}}The first fossils that might represent animals appear in the 665-million-year-old rocks of the Trezona Formation of South Australia. These fossils are interpreted as most probably being early sponges.[78] The oldest animals are found in the Ediacaran biota, towards the end of the Precambrian, around 610 million years ago. It had long been doubtful whether these included animals,[79][80][81] but the discovery of the animal lipid cholesterol in fossils of Dickinsonia establishes that these were indeed animals.[77] Many animal phyla first appear in the fossil record during the Cambrian explosion, starting about 542 million years ago, in beds such as the Burgess shale. Extant phyla in these rocks include molluscs, brachiopods, onychophorans, tardigrades, arthropods, echinoderms and hemichordates, along with numerous now-extinct forms such as the predatory Anomalocaris. The apparent suddenness of the event may however be an artefact of the fossil record, rather than showing that all these animals appeared simultaneously.[82][83][84][85] Some palaeontologists have suggested that animals appeared much earlier than the Cambrian explosion, possibly as early as 1 billion years ago.[86] Trace fossils such as tracks and burrows found in the Tonian period may indicate the presence of triploblastic worm-like animals, roughly as large (about 5 mm wide) and complex as earthworms.[87] However, similar tracks are produced today by the giant single-celled protist Gromia sphaerica, so the Tonian trace fossils may not indicate early animal evolution.[88][89] Around the same time, another line of evidence may indicate the appearance of grazing animals: the layered mats of microorganisms called stromatolites decreased in diversity, perhaps due to grazing.[90] Phylogeny{{further|Lists of animals}}Animals are monophyletic, meaning they are derived from a common ancestor. Animals are sister to the Choanoflagellata, with which they form the Choanozoa.[91] The most basal animals, the Porifera, Ctenophora, Cnidaria, and Placozoa, have body plans that lack bilateral symmetry. Their relationships are still disputed; the sister group to all other animals could be the Porifera or the Ctenophora, which like the Porifera lack hox genes, important in body plan development.[92] These genes are found in the Placozoa[93][94] and the higher animals, the Bilateria.[95][96] 6,331 groups of genes common to all living animals have been identified; these may have arisen from a single common ancestor that lived 650 million years ago in the Precambrian. 25 of these are novel core gene groups, found only in animals; of those, 8 are for essential components of the Wnt and TGF-beta signalling pathways which may have enabled animals to become multicellular by providing a pattern for the body's system of axes (in three dimensions), and another 7 are for transcription factors including homeodomain proteins involved in the control of development.[97][98] The phylogenetic tree (of major lineages only) indicates approximately how many millions of years ago ({{em|mya}}) the lineages split.[99][100][101][102][103] {{Clade |style = font-size:80%; line-height:80%|label1=Choanozoa |sublabel1=950 mya |1={{Clade |1=Choanoflagellata |label2 =Animalia |sublabel2=760 mya |2={{Clade |1=Porifera |label2=Eumetazoa |2={{clade |1=Ctenophora |label2=ParaHoxozoa |sublabel2=680 mya |2={{clade |1={{clade |1=Placozoa |2=Cnidaria |label2=Bilateria |sublabel2=Triploblasts |2={{clade |1=Xenacoelomorpha |label2=Nephrozoa |sublabel2=650 mya |2={{clade |label1=Deuterostomia |1={{clade |1=Chordata |2=Ambulacraria |label2 =Protostomia |sublabel2=610 mya |2={{clade |label1=Ecdysozoa |sublabel1=>529 mya |1={{clade |1=Arthropoda and allies |2=Nematoda and allies |label2=Spiralia |2={{clade |label1=Gnathifera |1={{clade |1=Rotifera and allies |2=Chaetognatha |label2=Platytrochozoa |sublabel2=580 mya |2={{clade |1=Platyhelminthes and allies |label2=Lophotrochozoa |sublabel2=550 mya |2={{Clade |1=Mollusca |2=Annelida and allies }} }} }} }} }} }} }} }} }} }} }}{{anchor|Ctenophora.2C_Porifera.2C_Placozoa.2C_Cnidaria_and_Bilateria}} Non-bilaterian animalsSeveral animal phyla lack bilateral symmetry. Among these, the sponges (Porifera) probably diverged first, representing the oldest animal phylum.[104] Sponges lack the complex organization found in most other animal phyla;[105] their cells are differentiated, but in most cases not organised into distinct tissues.[106] They typically feed by drawing in water through pores.[107] The Ctenophora (comb jellies) and Cnidaria (which includes jellyfish, sea anemones, and corals) are radially symmetric and have digestive chambers with a single opening, which serves as both mouth and anus.[108] Animals in both phyla have distinct tissues, but these are not organised into organs.[109] They are diploblastic, having only two main germ layers, ectoderm and endoderm.[110] The tiny placozoans are similar, but they do not have a permanent digestive chamber.[111][112] Bilaterian animals{{main|Bilateria|Symmetry (biology)#Bilateral symmetry}}The remaining animals, the great majority—comprising some 29 phyla and over a million species—form a clade, the Bilateria. The body is triploblastic, with three well-developed germ layers, and their tissues form distinct organs. The digestive chamber has two openings, a mouth and an anus, and there is an internal body cavity, a coelom or pseudocoelom. Animals with this bilaterally symmetric body plan and a tendency to move in one direction have a head end (anterior) and a tail end (posterior) as well as a back (dorsal) and a belly (ventral); therefore they also have a left side and a right side.[168][169] Having a front end means that this part of the body encounters stimuli, such as food, favouring cephalisation, the development of a head with sense organs and a mouth. Many bilaterians have a combination of circular muscles that constrict the body, making it longer, and an opposing set of longitudinal muscles, that shorten the body;[169] these enable soft-bodied animals with a hydrostatic skeleton to move by peristalsis.[113] They also have a gut that extends through the basically cylindrical body from mouth to anus. Many bilaterian phyla have primary larvae which swim with cilia and have an apical organ containing sensory cells. However, there are exceptions to each of these characteristics; for example, adult echinoderms are radially symmetric (unlike their larvae), while some parasitic worms have extremely simplified body structures.[114][115] Genetic studies have considerably changed zoologists' understanding of the relationships within the Bilateria. Most appear to belong to two major lineages, the protostomes and the deuterostomes.[116] The basalmost bilaterians are the Xenacoelomorpha.[117][118][119] {{clear}}Protostomes and deuterostomes{{further|Embryological origins of the mouth and anus}}{{main|Protostome|Deuterostome}}Protostomes and deuterostomes differ in several ways. Early in development, deuterostome embryos undergo radial cleavage during cell division, while many protostomes (the Spiralia) undergo spiral cleavage.[120] Animals from both groups possess a complete digestive tract, but in protostomes the first opening of the embryonic gut develops into the mouth, and the anus forms secondarily. In deuterostomes, the anus forms first while the mouth develops secondarily.[121][122] Most protostomes have schizocoelous development, where cells simply fill in the interior of the gastrula to form the mesoderm. In deuterostomes, the mesoderm forms by enterocoelic pouching, through invagination of the endoderm.[123] The main deuterostome phyla are the Echinodermata and the Chordata.[124] Echinoderms are exclusively marine and include starfish, sea urchins, and sea cucumbers.[125] The chordates are dominated by the vertebrates (animals with backbones),[126] which consist of fishes, amphibians, reptiles, birds, and ">mammals.[127] The deuterostomes also include the Hemichordata (acorn worms).[128][129] Ecdysozoa{{main|Ecdysozoa}}The Ecdysozoa are protostomes, named after their shared trait of ecdysis, growth by moulting.[130] They include the largest animal phylum, the Arthropoda, which contains insects, spiders, crabs, and their kin. All of these have a body divided into repeating segments, typically with paired appendages. Two smaller phyla, the Onychophora and Tardigrada, are close relatives of the arthropods and share these traits. The ecdysozoans also include the Nematoda or roundworms, perhaps the second largest animal phylum. Roundworms are typically microscopic, and occur in nearly every environment where there is water;[131] some are important parasites.[132] Smaller phyla related to them are the Nematomorpha or horsehair worms, and the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom.[133] Spiralia{{main|Spiralia}}The Spiralia are a large group of protostomes that develop by spiral cleavage in the early embryo.[134] The Spiralia's phylogeny has been disputed, but it contains a large clade, the superphylum Lophotrochozoa, and smaller groups of phyla such as the Rouphozoa which includes the gastrotrichs and the flatworms. All of these are grouped as the Platytrochozoa, which has a sister group, the Gnathifera, which includes the rotifers.[135][136] The Lophotrochozoa includes the molluscs, annelids, brachiopods, nemerteans, bryozoa and entoprocts.[135][137][138] The molluscs, the second-largest animal phylum by number of described species, includes snails, clams, and squids, while the annelids are the segmented worms, such as earthworms, lugworms, and leeches. These two groups have long been considered close relatives because they share trochophore larvae.[139][140] History of classification{{further|Taxonomy (biology)|History of zoology (through 1859)|History of zoology since 1859}}In the classical era, Aristotle divided animals,{{efn|In his History of Animals and Parts of Animals.}} based on his own observations, into those with blood (roughly, the vertebrates) and those without. The animals were then arranged on a scale from man (with blood, 2 legs, rational soul) down through the live-bearing tetrapods (with blood, 4 legs, sensitive soul) and other groups such as crustaceans (no blood, many legs, sensitive soul) down to spontaneously-generating creatures like sponges (no blood, no legs, vegetable soul). Aristotle was uncertain whether sponges were animals, which in his system ought to have sensation, appetite, and locomotion, or plants, which did not: he knew that sponges could sense touch, and would contract if about to be pulled off their rocks, but that they were rooted like plants and never moved about.[141] In 1758, ">Carl Linnaeus created the first hierarchical classification in his Systema Naturae.[142] In his original scheme, the animals were one of three kingdoms, divided into the classes of Vermes, Insecta, Pisces, Amphibia, Aves, and Mammalia. Since then the last four have all been subsumed into a single phylum, the Chordata, while his Insecta (which included the crustaceans and arachnids) and Vermes have been renamed or broken up. The process was begun in 1793 by ">Jean-Baptiste de Lamarck, who called the Vermes une espèce de chaos (a chaotic mess){{efn|The prefix une espèce de is pejorative.[143]}} and split the group into three new phyla, worms, echinoderms, and polyps (which contained corals and jellyfish). By 1809, in his Philosophie Zoologique, Lamarck had created 9 phyla apart from vertebrates (where he still had 4 phyla: mammals, birds, reptiles, and fish) and molluscs, namely cirripedes, annelids, crustaceans, arachnids, insects, worms, radiates, polyps, and infusorians.[144] In his 1817 Le Règne Animal, ">Georges Cuvier used comparative anatomy to group the animals into four embranchements ("branches" with different body plans, roughly corresponding to phyla), namely vertebrates, molluscs, articulated animals (arthropods and annelids), and zoophytes (radiata) (echinoderms, cnidaria and other forms).[145] This division into four was followed by the embryologist Karl Ernst von Baer in 1828, the zoologist Louis Agassiz in 1857, and the comparative anatomist Richard Owen in 1860.[206] In 1874, ">Ernst Haeckel divided the animal kingdom into two subkingdoms: Metazoa (multicellular animals, with five phyla: coelenterates, echinoderms, articulates, molluscs, and vertebrates) and Protozoa (single-celled animals), including a sixth animal phylum, sponges.[146][147] The protozoa were later moved to the former kingdom Protista, leaving only the Metazoa as a synonym of Animalia.[148] In human culture{{main |Animals in culture}}The human population exploits a large number of other animal species for food, both of domesticated livestock species in animal husbandry and, mainly at sea, by hunting wild species.[149][211] Marine fish of many species are caught commercially for food. A smaller number of species are farmed commercially.[149][150][151] Invertebrates including cephalopods, crustaceans, and bivalve or gastropod molluscs are hunted or farmed for food.[152] Chickens, cattle, sheep, pigs and other animals are raised as livestock for meat across the world.[153][154][155] Animal fibres such as wool are used to make textiles, while animal sinews have been used as lashings and bindings, and leather is widely used to make shoes and other items. Animals have been hunted and farmed for their fur to make items such as coats and hats.[156][157] Dyestuffs including carmine (cochineal),[158][159] shellac,[160][161] and kermes[162][163] have been made from the bodies of insects. Working animals including cattle and horses have been used for work and transport from the first days of agriculture.[164] Animals such as the fruit fly Drosophila melanogaster serve a major role in science as experimental models.[165][166][167][168] Animals have been used to create vaccines since their discovery in the 18th century.[169] Some medicines such as the cancer drug Yondelis are based on toxins or other molecules of animal origin.[170] People have used hunting dogs to help chase down and retrieve animals,[171] and birds of prey to catch birds and mammals,[172] while tethered cormorants have been used to catch fish.[173] Poison dart frogs have been used to poison the tips of blowpipe darts.[174][175] A wide variety of animals are kept as pets, from invertebrates such as tarantulas and octopuses, insects including praying mantises,[176] reptiles such as snakes and chameleons,[177] and birds including canaries, parakeets, and parrots[178] all finding a place. However, the most kept pet species are mammals, namely dogs, cats, and rabbits.[179][180][181] There is a tension between the role of animals as companions to humans, and their existence as individuals with rights of their own.[182] A wide variety of terrestrial and aquatic animals are hunted for sport.[183] Animals have been the subjects of art from the earliest times, both historical, as in Ancient Egypt, and prehistoric, as in the cave paintings at Lascaux. Major animal paintings include Albrecht Dürer's 1515 The Rhinoceros, and George Stubbs's c. 1762 horse portrait Whistlejacket.[184] Insects, birds and mammals play roles in literature and film,[185] such as in giant bug movies.[186][187][188] Animals including insects[252] and mammals[253] feature in mythology and religion. In both Japan and Europe, a butterfly was seen as the personification of a person's soul,[189][190][191] while the scarab beetle was sacred in ancient Egypt.[192] Among the mammals, cattle,[193] deer,[194] horses,[195] lions,[196] bats,[197] bears,[198] and wolves[199] are the subjects of myths and worship. The signs of the Western and Chinese zodiacs are based on animals.[200][201]See also{{Wikipedia books}}
Notes{{Notelist}}References1. ^{{cite book |last=Cresswell |first=Julia |title=The Oxford Dictionary of Word Origins |year=2010 |publisher=Oxford University Press |location=New York |edition=2nd |isbn=978-0-19-954793-7 |quote='having the breath of life', from anima 'air, breath, life'.}} 2. ^{{cite encyclopedia |year=2006 |title=Animal |encyclopedia=The American Heritage Dictionary |publisher=Houghton Mifflin Company |edition=4th}} 3. ^{{cite web |website=English Oxford Living Dictionaries |title=animal |url=https://en.oxforddictionaries.com/definition/animal |access-date=26 July 2018}} 4. ^{{cite journal |last=Boly |first=Melanie |last2=Seth |first2=Anil K. |last3=Wilke |first3=Melanie |last4=Ingmundson |first4=Paul |last5=Baars |first5=Bernard |last6=Laureys |first6=Steven |last7=Edelman |first7=David |last8=Tsuchiya |first8=Naotsugu |date=2013 |title=Consciousness in humans and non-human animals: recent advances and future directions |journal=Frontiers in Psychology |volume=4 |pages=625 |doi=10.3389/fpsyg.2013.00625 |pmc=3814086 |pmid=24198791}} 5. ^{{Cite web |url=https://royalsociety.org/topics-policy/publications/2004/non-human-animals/ |title=The use of non-human animals in research |access-date=7 June 2018}} 6. ^{{Cite web |url=https://www.collinsdictionary.com/dictionary/english/nonhuman |title=Nonhuman definition and meaning {{!}} Collins English Dictionary |publisher=Collins |access-date=7 June 2018}} 7. ^{{cite book |author=Avila, Vernon L. |title=Biology: Investigating Life on Earth |url=https://books.google.com/books?id=B_OOazzGefEC&pg=PA767 |year=1995 |publisher=Jones & Bartlett Learning |isbn=978-0-86720-942-6 |pages=767–}} 8. ^1 {{cite web |title=Palaeos:Metazoa |url=http://palaeos.com/metazoa/metazoa.html |website=Palaeos |accessdate=25 February 2018}} 9. ^{{cite web |last=Davidson |first=Michael W. |title=Animal Cell Structure |url=http://micro.magnet.fsu.edu/cells/animalcell.html |accessdate=20 September 2007 |archiveurl=https://web.archive.org/web/20070920235924/http://micro.magnet.fsu.edu/cells/animalcell.html |archivedate=20 September 2007 |deadurl=no}} 10. ^{{cite web |last=Bergman |first=Jennifer |title=Heterotrophs |url=http://www.windows.ucar.edu/tour/link=/earth/Life/heterotrophs.html&edu=high |accessdate=30 September 2007 |archiveurl=https://web.archive.org/web/20070829051950/http://www.windows.ucar.edu/tour/link%3D/earth/Life/heterotrophs.html%26edu%3Dhigh |archivedate=29 August 2007 |deadurl=no}} 11. ^{{cite journal |last1=Douglas |first1=Angela E. |last2=Raven |first2=John A. |title=Genomes at the interface between bacteria and organelles |journal=Philosophical Transactions of the Royal Society B |volume=358 |issue=1429 |pages=5–17 |date=January 2003 |pmid=12594915 |pmc=1693093 |doi=10.1098/rstb.2002.1188}} 12. ^{{cite journal |last1=Mentel |first1=Marek |last2=Martin |first2=William |title=Anaerobic animals from an ancient, anoxic ecological niche |journal=BMC Biology |volume=8 |pages=32 |year=2010 |doi=10.1186/1741-7007-8-32 |pmid=20370917 |pmc=2859860}} 13. ^{{cite web |url=http://employees.csbsju.edu/SSAUPE/biol116/Zoology/digestion.htm |last=Saupe |first=S.G. |title=Concepts of Biology |accessdate=30 September 2007}} 14. ^{{cite book |last=Minkoff |first=Eli C. |title=Barron's EZ-101 Study Keys Series: Biology |year=2008 |publisher=Barron's Educational Series |isbn=978-0-7641-3920-8 |edition=2nd, revised |page=48}} 15. ^{{cite book |last1=Alberts |first1=Bruce |last2=Johnson |first2=Alexander |last3=Lewis |first3=Julian |last4=Raff |first4=Martin |last5=Roberts |first5=Keith |last6=Walter |first6=Peter |title=Molecular Biology of the Cell |edition=4th |year=2002 |publisher=Garland Science |url=https://www.ncbi.nlm.nih.gov/books/NBK26810/ |isbn=978-0-8153-3218-3}} 16. ^{{cite book |last=Sangwal |first=Keshra |title=Additives and crystallization processes: from fundamentals to applications |year=2007 |publisher=John Wiley and Sons |isbn=978-0-470-06153-4 |page=212}} 17. ^{{cite book |last=Becker |first=Wayne M. |title=The world of the cell |year=1991 |publisher=Benjamin/Cummings |isbn=978-0-8053-0870-9}} 18. ^{{cite book |last=Magloire |first=Kim |title=Cracking the AP Biology Exam, 2004–2005 Edition |year=2004 |publisher=The Princeton Review |isbn=978-0-375-76393-9 |page=45}} 19. ^{{cite book |url=https://books.google.com/?id=EXNFwB-O-WUC&pg=PA362 |title=Biology: Concepts and Applications without Physiology |last=Starr |first=Cecie |date=2007-09-25 |publisher=Cengage Learning |isbn=978-0-495-38150-1 |pages=362, 365}} 20. ^{{cite book |last1=Hillmer |first1=Gero |last2=Lehmann |first2=Ulrich |others=Translated by J. Lettau |title=Fossil Invertebrates |year=1983 |publisher=CUP Archive |isbn=978-0-521-27028-1 |page=54 |url=https://books.google.com/books?id=9jE4AAAAIAAJ&lpg=PP1&pg=PA54}} 21. ^{{cite book |last=Knobil |first=Ernst |title=Encyclopedia of reproduction, Volume 1 |year=1998 |publisher=Academic Press |isbn=978-0-12-227020-8 |page=315}} 22. ^{{cite book |last=Schwartz |first=Jill |title=Master the GED 2011 |year=2010 |publisher=Peterson's |isbn=978-0-7689-2885-3 |page=371}} 23. ^{{cite book |last=Hamilton |first=Matthew B. |title=Population genetics |year=2009 |publisher=Wiley-Blackwell |isbn=978-1-4051-3277-0 |page=55}} 24. ^{{cite book |last1=Ville |first1=Claude Alvin |last2=Walker |first2=Warren Franklin |last3=Barnes |first3=Robert D. |title=General zoology |year=1984 |publisher=Saunders College Pub |isbn=978-0-03-062451-3 |page=467}} 25. ^{{cite book |last1=Hamilton |first1=William James |last2=Boyd |first2=James Dixon |last3=Mossman |first3=Harland Winfield |title=Human embryology: (prenatal development of form and function) |year=1945 |publisher=Williams & Wilkins |page=330}} 26. ^{{cite book |last=Philips |first=Joy B. |title=Development of vertebrate anatomy |year=1975 |publisher=Mosby |isbn=978-0-8016-3927-2 |page=176}} 27. ^{{cite book |title=The Encyclopedia Americana: a library of universal knowledge, Volume 10 |year=1918 |publisher=Encyclopedia Americana Corp. |page=281}} 28. ^{{cite book |last1=Romoser |first1=William S. |last2=Stoffolano |first2=J.G. |title=The science of entomology |year=1998 |publisher=WCB McGraw-Hill |isbn=978-0-697-22848-2 |page=156}} 29. ^{{cite journal |last1=Charlesworth |first1=D. |last2=Willis |first2=J.H. |title=The genetics of inbreeding depression |journal=Nat. Rev. Genet. |volume=10 |issue=11 |pages=783–796 |year=2009 |pmid=19834483 |doi=10.1038/nrg2664}} 30. ^{{Cite book |last1=Bernstein |first=H. |last2=Hopf |first2=F.A. |last3=Michod |first3=R.E. |title=The molecular basis of the evolution of sex |journal=Adv. Genet. |volume=24 |pages=323–370 |year=1987 |pmid=3324702 |doi=10.1016/s0065-2660(08)60012-7 |series=Advances in Genetics |isbn=978-0-12-017624-3}} 31. ^{{cite journal |last1=Pusey |first1=Anne |last2=Wolf |first2=Marisa |title=Inbreeding avoidance in animals |journal=Trends Ecol. Evol. |volume=11 |issue=5 |pages=201–206 |year=1996 |pmid=21237809 |doi=10.1016/0169-5347(96)10028-8}} 32. ^{{cite journal |last1=Petrie |first1=M. |last2=Kempenaers |first2=B. |year=1998 |title=Extra-pair paternity in birds: Explaining variation between species and populations |url= |journal=Trends in Ecology and Evolution |volume=13 |issue=2 |pages=52–57 |doi=10.1016/s0169-5347(97)01232-9 |pmid=21238200}} 33. ^{{cite book |last1=Adiyodi |first1=K.G. |last2=Hughes |first2=Roger N. |last3=Adiyodi |first3=Rita G. |title=Reproductive Biology of Invertebrates, Volume 11, Progress in Asexual Reproduction |date=July 2002 |publisher=Wiley |page=116 |isbn=978-0-471-48968-9}} 34. ^{{cite web |last1=Schatz |first1=Phil |title=Concepts of Biology {{!}} How Animals Reproduce |url=http://philschatz.com/biology-concepts-book/contents/m45547.html |publisher=OpenStax College |accessdate=5 March 2018}} 35. ^{{cite book |title=Geomorphology and environmental impact assessment |year=2001 |publisher=Taylor & Francis |isbn=978-90-5809-344-8 |last1=Marchetti |first1=Mauro |last2=Rivas |first2=Victoria |page=84}} 36. ^{{cite book |last=Levy |first=Charles K. |title=Elements of Biology |year=1973 |publisher=Appleton-Century-Crofts |isbn=978-0-390-55627-1 |page=108}} 37. ^{{cite book |last1=Begon |first1=M. |last2=Townsend |first2=C. |last3=Harper |first3=J. |date=1996 |title=Ecology: Individuals, populations and communities |edition=Third |publisher=Blackwell Science |isbn=978-0-86542-845-4 |pages= }} 38. ^{{cite book |title=Ecology of marine fishes: California and adjacent waters |year=2006 |publisher=University of California Press |isbn=978-0-520-24653-9 |last1=Allen |first1=Larry Glen |last2=Pondella |first2=Daniel J. |last3=Horn |first3=Michael H. |page=428}} 39. ^{{cite book |last=Caro |first=Tim |authorlink=Tim Caro |title=Antipredator Defenses in Birds and Mammals |date=2005 |publisher=University of Chicago Press |pages=1–6 and passim}} 40. ^{{cite journal |doi=10.1016/j.cub.2004.08.038 |pmid=15341755 |title=The real 'kingdoms' of eukaryotes |journal=Current Biology |volume=14 |issue=17 |pages=R693–696 |year=2004 |last1=Simpson |first1=Alastair G.B |last2=Roger |first2=Andrew J}} 41. ^{{cite journal |last1=Stevens |first1=Alison N.P. |title=Predation, Herbivory, and Parasitism |journal=Nature Education Knowledge |date=2010 |volume=3 |issue=10 |page=36 |url=https://www.nature.com/scitable/knowledge/library/predation-herbivory-and-parasitism-13261134 |accessdate=12 February 2018}} 42. ^{{Cite journal |last=Jervis |first=M.A. |last2=Kidd |first2=N.A.C |date=November 1986 |title=Host-Feeding Strategies in Hymenopteran Parasitoids |journal=Biological Reviews |volume=61 |issue=4 |pages=395–434 |doi=10.1111/j.1469-185x.1986.tb00660.x}} 43. ^{{cite journal | last =Meylan | first =Anne | title =Spongivory in Hawksbill Turtles: A Diet of Glass | journal =Science | volume =239 | issue =4838 | pages =393–395 | date =1988-01-22 | doi=10.1126/science.239.4838.393| id= | pmid =17836872 | jstor=1700236| bibcode =1988Sci...239..393M }} 44. ^{{cite book |title=Understanding Science: Upper Primary |last=Clutterbuck |first=Peter |year=2000 |publisher=Blake Education |isbn=978-1-86509-170-9 |page=9}} 45. ^{{cite book |last=Gupta |first=P.K. |title=Genetics Classical To Modern |publisher=Rastogi Publications |isbn=978-81-7133-896-2 |page=26|year=1900 }} 46. ^{{cite book |last1=Garrett |first1=Reginald |last2=Grisham |first2=Charles M. |title=Biochemistry |year=2010 |publisher=Cengage Learning |isbn=978-0-495-10935-8 |page=535}} 47. ^{{cite journal |title=none |year=1996 |journal=New Scientist |volume=152 |issue=2050–2055 |page=105}} 48. ^{{cite book |last1=Castro |first1=Peter |last2=Huber |first2=Michael E. |title=Marine Biology |publisher=McGraw-Hill |year=2007 |edition=7th |page=376 |isbn=978-0-07-722124-9}} 49. ^{{cite journal |doi=10.1016/j.cub.2013.01.026 |pmid=23375891|title=Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan Evolution |journal=Current Biology |volume=23 |issue=5 |pages=392–8 |year=2013 |last1=Rota-Stabelli |first1=Omar |last2=Daley |first2=Allison C. |last3=Pisani |first3=Davide |url=https://ac.els-cdn.com/S0960982213000298/1-s2.0-S0960982213000298-main.pdf?_tid=spdf-12ada42b-5734-42d3-a41d-53fb216a2e22&acdnat=1519922052_eb0f92cfa2dd11e76e33cfe22ef4a312 |access-date=1 March 2018}} 50. ^{{cite journal |journal=Nature |volume=440 |pages=757–763 |date=6 April 2006 |doi=10.1038/nature04639 |title=A Devonian tetrapod-like fish and the evolution of the tetrapod body plan |url=http://www.nature.com/nature/journal/v440/n7085/abs/nature04639.html |last1=Daeschler |first1=Edward B. |last2=Shubin |first2=Neil H. |last3=Jenkins |first3=Farish A., Jr. |pmid=16598249 |issue=7085|bibcode=2006Natur.440..757D }} 51. ^{{cite journal |authorlink=Jennifer A. Clack |author=Clack, Jennifer A. |journal=Scientific American |url=http://www.scientificamerican.com/article.cfm?id=getting-a-leg-up-on-land |title=Getting a Leg Up on Land |date=21 November 2005}} 52. ^{{cite book |author1=Margulis, Lynn |author1link=Lynn Margulis |author2=Schwartz, Karlene V. |author3=Dolan, Michael |title=Diversity of Life: The Illustrated Guide to the Five Kingdoms |url=https://books.google.com/books?id=8wJXWBMsEOkC&pg=PA115 |year=1999 |publisher=Jones & Bartlett Learning |isbn=978-0-7637-0862-7 |pages=115–116}} 53. ^{{cite journal|doi=10.1017/S1473550413000438|title=The thermal limits to life on Earth |journal=International Journal of Astrobiology |volume=13 |issue=2 |pages=141–154 |year=2014|last1=Clarke|first1=Andrew|bibcode=2014IJAsB..13..141C|url=http://nora.nerc.ac.uk/id/eprint/507274/1/Clarke.pdf }} 54. ^{{cite web|title=Land animals|url=https://www.bas.ac.uk/about/antarctica/wildlife/land-animals/|publisher=British Antarctic Survey|accessdate=7 March 2018}} 55. ^1 2 {{cite book |author=Wood, Gerald |title=The Guinness Book of Animal Facts and Feats |year=1983 |isbn=978-0-85112-235-9}} 56. ^{{cite web |last1=Davies |first1=Ella |title=The longest animal alive may be one you never thought of |url=http://www.bbc.com/earth/story/20160420-the-longest-animal-alive-may-not-be-the-blue-whale |website=BBC Earth |accessdate=1 March 2018 |date=20 April 2016}} 57. ^{{cite web |url=http://www.guinnessworldrecords.com/world-records/largest-mammal |title=Largest mammal |publisher=Guinness World Records}} 58. ^{{cite journal |last=Mazzetta |first=Gerardo V. |author2=Christiansen, Per |author3=Fariña, Richard A. |year=2004 |title=Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs |journal=Historical Biology |volume=16 |issue= 2–4 |pages=71–83 |doi=10.1080/08912960410001715132 |citeseerx=10.1.1.694.1650 }} 59. ^{{cite web |url=http://tolweb.org/Myxozoa/2460/2008.07.10 |title=Myxozoa |author=Fiala, Ivan |date=10 July 2008 |publisher=Tree of Life Web Project |accessdate=4 March 2018}} 60. ^{{cite journal|title=Two new species of Myxobolus (Myxozoa: Myxosporea: Bivalvulida) infecting an Indian major carp and a cat fish in wetlands of Punjab, India | pmc=3235390 | pmid=23024499 | doi=10.1007/s12639-011-0061-4 | volume=35 | issue=2 | year=2011 | journal=Journal of Parasitic Diseases | pages=169–176 | last1=Kaur | first1=H. | last2=Singh | first2=R.}} 61. ^1 2 3 4 5 6 7 8 9 10 11 12 13 {{cite journal |last=Zhang |first=Zhi-Qiang |title=Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013) |journal=Zootaxa |volume=3703 |issue=1 |date=2013-08-30 |doi=10.11646/zootaxa.3703.1.3 |url=https://biotaxa.org/Zootaxa/article/download/zootaxa.3703.1.3/4273 |page=5}} 62. ^1 2 3 4 5 6 7 8 9 {{cite book|last1=Balian |first1=E.V. |last2=Lévêque |first2=C. |last3=Segers|first3=H.|first4=K. |last4=Martens |title=Freshwater Animal Diversity Assessment |url=https://books.google.com/books?id=Dw4H6DBHnAgC&pg=PA628 |year=2008 |publisher=Springer |isbn=978-1-4020-8259-7 |page=628}} 63. ^1 2 3 4 5 6 7 8 9 10 11 12 13 {{cite web|last1=Hogenboom |first1=Melissa |title=There are only 35 kinds of animal and most are really weird|url=http://www.bbc.co.uk/earth/story/20150325-all-animal-life-in-35-photos|publisher=BBC earth}} 64. ^1 2 3 4 5 6 7 {{cite book |last=Poulin |first=Robert |authorlink=Robert Poulin (zoologist) |title=Evolutionary Ecology of Parasites |publisher=Princeton University Press |year=2007 |isbn=978-0-691-12085-0 |page=6}} 65. ^1 2 3 {{cite book |last1=Felder |first1=Darryl L. |last2=Camp |first2=David K. |title=Gulf of Mexico Origin, Waters, and Biota: Biodiversity |url=https://books.google.com/books?id=CphA8hiwaFIC&pg=RA1-PA1111 |year=2009 |publisher=Texas A&M University Press |isbn=978-1-60344-269-5 |page=1111}} 66. ^{{cite web |title=How many species on Earth? About 8.7 million, new estimate says |url=https://www.sciencedaily.com/releases/2011/08/110823180459.htm |accessdate=2 March 2018 |date=24 August 2011}} 67. ^{{cite journal |last=Mora |first=Camilo |last2=Tittensor |first2=Derek P. |last3=Adl |first3=Sina |last4=Simpson |first4=Alastair G.B. |last5=Worm |first5=Boris |editor-last=Mace |editor-first=Georgina M. |title=How Many Species Are There on Earth and in the Ocean? |journal=PLoS Biology |volume=9 |issue=8 |date=2011-08-23 |doi=10.1371/journal.pbio.1001127 |page=e1001127 |pmid=21886479 |pmc=3160336}} 68. ^{{cite journal |last1=Hebert |first1=Paul D.N. |last2=Ratnasingham |first2=Sujeevan |last3=Zakharov |first3=Evgeny V. |last4=Telfer |first4=Angela C. |last5=Levesque-Beaudin |first5=Valerie |last6=Milton |first6=Megan A. |last7=Pedersen |first7=Stephanie |last8=Jannetta |first8=Paul |last9=deWaard |first9=Jeremy R. |title=Counting animal species with DNA barcodes: Canadian insects |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |date=1 August 2016 |volume=371 |issue=1702 |pages=20150333 |doi=10.1098/rstb.2015.0333 |pmid=27481785 |pmc=4971185}} 69. ^{{cite journal |last=Stork |first=Nigel E. |title=How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? |journal=Annual Review of Entomology |volume=63 |issue=1 |date=January 2018 |doi=10.1146/annurev-ento-020117-043348 |pmid=28938083 |pages=31–45}} Stork notes that 1m insects have been named, making much larger predicted estimates. 70. ^{{cite book |year=2002 |series=Zoological catalogue of Australia |volume=19.2A |title=Crustacea: Malacostraca |publisher=CSIRO Publishing |isbn=978-0-643-06901-5 |chapter=Introduction |author=Poore, Hugh F. |pages=1–7 |chapter-url=https://books.google.com/books?id=ww6RzBz42-4C&pg=PA1}} 71. ^1 2 3 {{cite book |last1=Reaka-Kudla |first1=Marjorie L.|last2=Wilson |first2=Don E. |last3=Wilson |first3=Edward O. |author3link=E. O. Wilson |title=Biodiversity II: Understanding and Protecting Our Biological Resources |url=https://books.google.com/books?id=-X5OAgAAQBAJ&pg=PA90 |year=1996 |publisher=Joseph Henry Press |isbn=978-0-309-52075-1 |page=90}} 72. ^{{cite book |last1=Burton |first1=Derek |last2=Burton |first2=Margaret |title=Essential Fish Biology: Diversity, Structure and Function |url=https://books.google.com/books?id=U0o4DwAAQBAJ&pg=PA281 |year=2017 |publisher=Oxford University Press |isbn=978-0-19-878555-2 |pages=281–282 |quote=Trichomycteridae ... includes obligate parasitic fish. Thus 17 genera from 2 subfamilies, Vandelliinae; 4 genera, 9spp. and Stegophilinae; 13 genera, 31 spp. are parasites on gills (Vandelliinae) or skin (stegophilines) of fish.}} 73. ^1 2 3 {{cite journal |author=Nicol, David |title=The Number of Living Species of Molluscs |journal=Systematic Zoology |volume=18 |issue=2 |date=June 1969 |pages=251–254 |doi=10.2307/2412618 |jstor=2412618}} 74. ^{{Cite journal |last1=Sluys |first1=R. |title=Global diversity of land planarians (Platyhelminthes, Tricladida, Terricola): a new indicator-taxon in biodiversity and conservation studies|journal=Biodiversity and Conservation |volume=8 |issue=12 |pages=1663–1681 |doi=10.1023/A:1008994925673 |year=1999}} 75. ^{{cite web |last1=Fontaneto |first1=Diego |title=Marine Rotifers {{!}} An Unexplored World of Richness |url=http://ukmarinesac.org.uk/PDF/rotifers.pdf |publisher=JMBA Global Marine Environment |accessdate=2 March 2018 |pages=4–5}} 76. ^{{cite book |last1=Morand |first1=Serge |last2=Krasnov |first2=Boris R. |last3=Littlewood |first3=D. Timothy J. |title=Parasite Diversity and Diversification |url=https://books.google.com/books?id=o2t2BgAAQBAJ&pg=PA44 |year=2015 |publisher=Cambridge University Press |isbn=978-1-107-03765-6 |page=44}} 77. ^1 {{cite journal | last=Bobrovskiy | first=Ilya | last2=Hope | first2=Janet M. | last3=Ivantsov | first3=Andrey | last4=Nettersheim | first4=Benjamin J. | last5=Hallmann | first5=Christian | last6=Brocks | first6=Jochen J. | title=Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals | journal=Science | volume=361 | issue=6408 | date=20 September 2018 | doi=10.1126/science.aat7228 | pmid=30237355 | pages=1246–1249}} 78. ^{{cite journal |title=Possible animal-body fossils in pre-Marinoan limestones from South Australia |journal=Nature Geoscience |volume=3 |pages=653–659 |date=17 August 2010 |url=http://www.nature.com/ngeo/journal/v3/n9/full/ngeo934.html |doi=10.1038/ngeo934 |issue=9 |bibcode=2010NatGe...3..653M |last1=Maloof |first1=Adam C. |last2=Rose |first2=Catherine V. |last3=Beach |first3=Robert |last4=Samuels |first4=Bradley M. |last5=Calmet |first5=Claire C. |last6=Erwin |first6=Douglas H. |last7=Poirier |first7=Gerald R. |last8=Yao |first8=Nan |last9=Simons |first9=Frederik J.}} 79. ^{{cite journal | last1=Shen | first1=Bing | last2=Dong | first2=Lin | last3=Xiao | first3=Shuhai | last4=Kowalewski | first4=Michał | year=2008 | title=The Avalon Explosion: Evolution of Ediacara Morphospace | url=http://www.sciencemag.org/content/319/5859/81.short | journal=Science | volume=319 | issue=5859 | pages=81–84 | doi=10.1126/science.1150279 | pmid=18174439 |bibcode=2008Sci...319...81S }} 80. ^{{cite journal |url=http://advances.sciencemag.org/content/4/6/eaao6691 |title=Late Ediacaran trackways produced by bilaterian animals with paired appendages |first1=Zhe |last1=Chen |first2=Xiang |last2=Chen|first3=Chuanming |last3=Zhou |first4=Xunlai |last4=Yuan |first5=Shuhai |last5=Xiao |date=1 June 2018 |journal=Science Advances |volume=4 |issue=6 |pages=eaao6691 |doi=10.1126/sciadv.aao6691|pmid=29881773 |pmc=5990303 }} 81. ^{{cite book |last=Schopf |first=J. William |title=Evolution!: facts and fallacies |year=1999 |publisher=Academic Press |isbn=978-0-12-628860-5 |page=7}} 82. ^{{cite journal |last1=Maloof |first1=A.C. |last2=Porter |first2=S.M. |last3=Moore |first3=J.L. |last4=Dudas |first4=F.O. |last5=Bowring |first5=S.A. |last6=Higgins |first6=J.A. |last7=Fike |first7=D.A. |last8=Eddy |first8=M.P. |title=The earliest Cambrian record of animals and ocean geochemical change |journal=Geological Society of America Bulletin |year=2010 |volume=122 |issue=11–12 |pages=1731–1774 |doi=10.1130/B30346.1 |url=http://gsabulletin.gsapubs.org/content/122/11-12/1731 |bibcode=2010GSAB..122.1731M}} 83. ^{{cite web |title=New Timeline for Appearances of Skeletal Animals in Fossil Record Developed by UCSB Researchers |url=http://www.ia.ucsb.edu/pa/display.aspx?pkey=2364 |publisher=The Regents of the University of California |access-date=1 September 2014 |date=10 November 2010}} 84. ^{{cite journal |last=Conway-Morris |first=S. |authorlink=Simon Conway Morris |title=The Cambrian "explosion" of metazoans and molecular biology: would Darwin be satisfied? |journal=The International Journal of Developmental Biology |year=2003 |volume=47 |issue=7–8 |pages=505–515 |pmid=14756326 |url=http://www.ijdb.ehu.es/web/paper.php?doi=14756326}} 85. ^{{cite web|title=The Tree of Life|url=http://burgess-shale.rom.on.ca/en/science/origin/01-life-tree.php|website=The Burgess Shale|publisher=Royal Ontario Museum|accessdate=28 February 2018}} 86. ^{{cite book |last1=Campbell |first1=Neil A. |last2=Reece |first2=Jane B. |title=Biology |year=2005 |publisher=Pearson, Benjamin Cummings |isbn=978-0-8053-7171-0 |edition=7th |page=526}} 87. ^{{cite journal |last1=Seilacher |first1=Adolf |author1link=Adolf Seilacher |last2=Bose |first2=Pradip K. |last3=Pfluger |first3=Friedrich |title=Triploblastic animals more than 1 billion years ago: trace fossil evidence from india |journal=Science |volume=282 |pages=80–83 |date=2 October 1998 |doi=10.1126/science.282.5386.80 |pmid=9756480 |issue=5386 |bibcode=1998Sci...282...80S}} 88. ^{{cite journal |last1=Matz |first1=Mikhail V. |last2=Frank |first2=Tamara M. |last3=Marshall |first3=N. Justin |last4=Widder |first4=Edith A. |last5=Johnsen |first5=Sönke |title=Giant Deep-Sea Protist Produces Bilaterian-like Traces |journal=Current Biology |volume=18 |issue=23 |pages=1849–54 |date=9 December 2008 |url=http://www.biology.duke.edu/johnsenlab/pdfs/pubs/sea%20grapes%202008.pdf |doi=10.1016/j.cub.2008.10.028 |accessdate=2008-12-05 |pmid=19026540 |archiveurl=https://web.archive.org/web/20081216211211/http://www.biology.duke.edu/johnsenlab/pdfs/pubs/sea%20grapes%202008.pdf |archivedate=16 December 2008 |deadurl=yes |df=dmy-all }} 89. ^{{cite news |last=Reilly |first=Michael |title=Single-celled giant upends early evolution |publisher=MSNBC |date=20 November 2008 |url=http://www.nbcnews.com/id/27827279/ |accessdate=5 December 2008}} 90. ^{{Cite encyclopedia | author=Bengtson, S. | year=2002 | chapter=Origins and early evolution of predation | encyclopedia=The Paleontological Society Papers | volume=8 | title=The fossil record of predation | editor=Kowalewski, M. | editor2=Kelley, P.H. | pages=289–317 | publisher=The Paleontological Society | chapter-url=http://www.nrm.se/download/18.4e32c81078a8d9249800021552/Bengtson2002predation.pdf}} 91. ^{{cite journal |doi=10.1111/brv.12239 |pmid=26588818 |title=The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution |journal=Biological Reviews |volume=92 |issue=1 |pages=446–473 |year=2017 |last1=Budd |first1=Graham E |last2=Jensen |first2=Sören}} 92. ^{{cite journal | last=Giribet | first=Gonzalo | title=Genomics and the animal tree of life: conflicts and future prospects | journal=Zoologica Scripta | volume=45 | date=27 September 2016 | doi=10.1111/zsc.12215 | pages=14–21}} 93. ^{{Cite web |url=https://emb.carnegiescience.edu/sites/emb.carnegiescience.edu/files/evodevo12.pdf |title=Evolution and Development |date=1 May 2012 |website=Carnegie Institution for Science Department of Embryology |page=38 |archive-url=https://web.archive.org/web/20140302084415/http://emb.carnegiescience.edu/sites/emb.carnegiescience.edu/files/evodevo12.pdf |archive-date=2 March 2014 |dead-url=yes |access-date=4 March 2018}} 94. ^{{cite journal | last=Dellaporta | first=Stephen | last2=Holland | first2=Peter | last3=Schierwater | first3=Bernd | last4=Jakob | first4=Wolfgang | last5=Sagasser | first5=Sven | last6=Kuhn | first6=Kerstin | title=The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary | journal=Development Genes and Evolution | volume=214 | issue=4 | date=April 2004 | doi=10.1007/s00427-004-0390-8 | pmid=14997392 | pages=170–175}} 95. ^{{cite journal |doi=10.1046/j.1525-142x.2001.003003170.x |pmid=11440251 |title=Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences |journal=Evolution and Development |volume=3 |issue=3 |pages=170–205 |year=2001 |last1=Peterson |first1=Kevin J. |last2=Eernisse |first2=Douglas J|citeseerx=10.1.1.121.1228 }} 96. ^{{cite journal |doi=10.1101/041806 |url=https://www.biorxiv.org/content/biorxiv/early/2016/03/19/041806.full.pdf |accessdate=25 February 2018 |title=A catalogue of Bilaterian-specific genes – their function and expression profiles in early development |year=2016 |last1=Kraemer-Eis |first1=Andrea |last2=Ferretti |first2=Luca |last3=Schiffer |first3=Philipp |last4=Heger |first4=Peter |last5=Wiehe |first5=Thomas}} 97. ^{{cite news |last=Zimmer |first=Carl |authorlink=Carl Zimmer |title=The Very First Animal Appeared Amid an Explosion of DNA |url=https://www.nytimes.com/2018/05/04/science/first-animal-genes-evolution.html |date=4 May 2018 |work=The New York Times |accessdate=4 May 2018 }} 98. ^{{cite journal |last1=Paps |first1=Jordi |last2=Holland |first2=Peter W.H. |title=Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty |url=https://www.nature.com/articles/s41467-018-04136-5 |date=30 April 2018 |journal=Nature Communications |volume=9 |pages=1730 |number=1730 (2018) |doi=10.1038/s41467-018-04136-5 |pmid=29712911 |pmc=5928047 |accessdate=4 May 2018 |bibcode=2018NatCo...9.1730P }} 99. ^{{cite journal |last=Peterson |first=Kevin J. |last2=Cotton |first2=James A. |last3=Gehling |first3=James G. |last4=Pisani |first4=Davide |date=27 April 2008 |title=The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records |url=http://rstb.royalsocietypublishing.org/content/363/1496/1435 |journal=Philosophical Transactions of the Royal Society of London B: Biological Sciences |volume=363 |issue=1496 |pages=1435–1443 |doi=10.1098/rstb.2007.2233 |pmid=18192191 |pmc=2614224}} 100. ^{{cite journal |last=Parfrey |first=Laura Wegener |last2=Lahr |first2=Daniel J.G. |last3=Knoll |first3=Andrew H. |last4=Katz |first4=Laura A. |date=16 August 2011 |title=Estimating the timing of early eukaryotic diversification with multigene molecular clocks |url=http://www.pnas.org/content/108/33/13624 |journal=Proceedings of the National Academy of Sciences |volume=108 |issue=33 |pages=13624–13629 |doi=10.1073/pnas.1110633108 |pmid=21810989 |bibcode=2011PNAS..10813624P |pmc=3158185}} 101. ^{{cite web |title=Raising the Standard in Fossil Calibration |url=http://fossilcalibrations.org/ |website=Fossil Calibration Database |accessdate=3 March 2018}} 102. ^{{Cite journal|last=Laumer|first=Christopher E. |last2=Gruber-Vodicka |first2=Harald |last3=Hadfield |first3=Michael G. |last4=Pearse|first4=Vicki B. |last5=Riesgo |first5=Ana |last6=Marioni |first6=John C. |last7=Giribet |first7=Gonzalo |date=2018-03-17 |title=Placozoa and Cnidaria are sister taxa|url=https://www.biorxiv.org/content/early/2018/03/17/200972 |journal=bioRxiv |pages=200972 |doi=10.1101/200972}} 103. ^{{cite journal |last=Adl |first=Sina M. |last2=Bass |first2=David |last3=Lane |first3=Christopher E. |last4=Lukeš |first4=Julius |last5=Schoch |first5=Conrad L. |last6=Smirnov |first6=Alexey |last7=Agatha |first7=Sabine |last8=Berney |first8=Cedric |last9=Brown |first9=Matthew W. |date=2018 |title=Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes |journal=Journal of Eukaryotic Microbiology |volume=66 |issue=1 |pages=4–119 |doi=10.1111/jeu.12691|pmid=30257078 }} 104. ^{{cite book |last1=Bhamrah |first1=H.S. |last2=Juneja |first2=Kavita |title=An Introduction to Porifera |year=2003 |publisher=Anmol Publications |isbn=978-81-261-0675-2 |page=58}} 105. ^{{cite book |last=Sumich |first=James L. |title=Laboratory and Field Investigations in Marine Life |year=2008 |publisher=Jones & Bartlett Learning |isbn=978-0-7637-5730-4 |page=67}} 106. ^{{cite book |last=Jessop |first=Nancy Meyer |title=Biosphere; a study of life |year=1970 |publisher=Prentice-Hall |page=428}} 107. ^{{cite book |last=Sharma |first=N.S. |title=Continuity And Evolution Of Animals |year=2005 |publisher=Mittal Publications |isbn=978-81-8293-018-6 |page=106}} 108. ^{{cite book |title=A Living Bay: The Underwater World of Monterey Bay |year=2000 |publisher=University of California Press |isbn=978-0-520-22149-9 |last1=Langstroth |first1=Lovell |last2=Langstroth |first2=Libby |editor-last=Newberry |editor-first=Todd |page=244}} 109. ^{{cite book |last=Safra |first=Jacob E. |title=The New Encyclopædia Britannica, Volume 16 |year=2003 |publisher=Encyclopædia Britannica |isbn=978-0-85229-961-6 |page=523}} 110. ^{{cite book |last=Kotpal |first=R.L. |title=Modern Text Book of Zoology: Invertebrates |publisher=Rastogi Publications |isbn=978-81-7133-903-7 |page=184|year=2012 }} 111. ^{{cite book |author= Barnes, Robert D. |year=1982 |title=Invertebrate Zoology |publisher=Holt-Saunders International |pages=84–85 |isbn=978-0-03-056747-6}} 112. ^{{cite web |author= |title=Introduction to Placozoa |url=http://www.ucmp.berkeley.edu/phyla/placozoa/placozoa.html |publisher=UCMP Berkeley |accessdate=10 March 2018}} 113. ^{{cite journal |author=Quillin, K.J. |title=Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris |journal=The Journal of Experimental Biology |volume=201 |issue=12 |pages=1871–1883 | date=May 1998 |pmid=9600869 |url=http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=9600869}} 114. ^1 {{cite book|author=Minelli, Alessandro |title=Perspectives in Animal Phylogeny and Evolution |url=https://books.google.com/books?id=jIASDAAAQBAJ&pg=PA53 |year=2009 |publisher=Oxford University Press |isbn=978-0-19-856620-5 |page=53}} 115. ^1 2 {{Cite book |url=http://www.sinauer.com/media/wysiwyg/samples/Brusca3e_Chapter_9.pdf |title=Introduction to the Bilateria and the Phylum Xenacoelomorpha {{!}} Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation |work=Invertebrates |last=Brusca |first=Richard C. |date=2016 |publisher=Sinauer Associates |pages=345–372 |isbn=978-1-60535-375-3}} 116. ^{{cite journal | last=Telford | first=Maximilian J. | title=Resolving Animal Phylogeny: A Sledgehammer for a Tough Nut? | journal=Developmental Cell | volume=14 | issue=4 | year=2008 | doi=10.1016/j.devcel.2008.03.016 | pages=457–459 | pmid=18410719}} 117. ^{{cite journal |last1=Philippe |first1=H. |last2=Brinkmann |first2=H. |last3=Copley |first3=R.R. |last4=Moroz |first4=L.L. |last5=Nakano |first5=H. |last6=Poustka |first6=A.J. |last7=Wallberg |first7=A. |last8=Peterson |first8=K.J. |last9=Telford |first9=M.J. |title=Acoelomorph flatworms are deuterostomes related to Xenoturbella |journal=Nature |volume=470 |pages=255–258 |year=2011 |pmid=21307940 |doi=10.1038/nature09676 |bibcode=2011Natur.470..255P |issue=7333 |pmc=4025995}} 118. ^{{cite journal|last1=Perseke |first1=M. |last2=Hankeln |first2=T. |last3=Weich |first3=B. |last4=Fritzsch |first4=G. |last5=Stadler |first5=P.F. |last6=Israelsson |first6=O. |last7=Bernhard |first7=D.|last8=Schlegel |first8=M. |title=The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis |journal=Theory Biosci |volume=126 |issue=1 |date=August 2007 |pages=35–42 | url=http://www.bioinf.uni-leipzig.de/Publications/PREPRINTS/07-009.pdf |pmid=18087755 |doi=10.1007/s12064-007-0007-7 |citeseerx=10.1.1.177.8060 }} 119. ^{{cite journal |last=Cannon |first=Johanna T. |last2=Vellutini |first2=Bruno C. |last3=Smith III |first3=Julian. |last4=Ronquist |first4=Frederik |last5=Jondelius |first5=Ulf |last6=Hejnol |first6=Andreas |date=3 February 2016 |title=Xenacoelomorpha is the sister group to Nephrozoa |url=http://www.nature.com/nature/journal/v530/n7588/full/nature16520.html |journal=Nature |volume=530 |issue=7588 |pages=89–93 |doi=10.1038/nature16520 |access-date=3 February 2016 |pmid=26842059 |bibcode=2016Natur.530...89C}} 120. ^{{cite journal |last=Valentine |first=James W. |date=July 1997 |title=Cleavage patterns and the topology of the metazoan tree of life |journal=PNAS |volume=94 |pages=8001–8005 |bibcode=1997PNAS...94.8001V |doi=10.1073/pnas.94.15.8001 |pmid=9223303 |pmc=21545 |issue=15}} 121. ^{{cite book |last1=Peters |first1=Kenneth E. |last2=Walters |first2=Clifford C. |last3=Moldowan |first3=J. Michael |title=The Biomarker Guide: Biomarkers and isotopes in petroleum systems and Earth history |volume=2 |year=2005 |publisher=Cambridge University Press |isbn=978-0-521-83762-0 |page=717}} 122. ^{{cite book |last1=Hejnol |first1=A. |last2=Martindale |first2=M.Q. |url=https://www.researchgate.net/publication/230766195 |title=The mouth, the anus, and the blastopore – open questions about questionable openings| work=Animal Evolution – Genomes, Fossils, and Trees |editor1=Telford, M.J. |editor2=Littlewood, D.J. |date=2009 |publisher=Oxford University Press |isbn=978-0-19-957030-0 |pages=33–40}} 123. ^{{cite book |last=Safra |first=Jacob E. |title=The New Encyclopædia Britannica, Volume 1; Volume 3 |year=2003 |publisher=Encyclopædia Britannica |isbn=978-0-85229-961-6 |page=767}} 124. ^{{cite book |last=Hyde |first=Kenneth |title=Zoology: An Inside View of Animals |year=2004 |publisher=Kendall Hunt |isbn=978-0-7575-0997-1 |page=345}} 125. ^{{cite book |last=Alcamo |first=Edward |title=Biology Coloring Workbook |year=1998 |publisher=The Princeton Review |isbn=978-0-679-77884-4 |page=220}} 126. ^{{cite book |last=Holmes |first=Thom |title=The First Vertebrates |publisher=Infobase Publishing |year=2008 |isbn=978-0-8160-5958-4 |p=64}} 127. ^{{cite book |last=Rice |first=Stanley A. |title=Encyclopedia of evolution |publisher=Infobase Publishing |year=2007 |page=75 |isbn=978-0-8160-5515-9}} 128. ^{{cite book |last1=Tobin |first1=Allan J. |last2=Dusheck |first2=Jennie |title=Asking about life |year=2005 |publisher=Cengage Learning |isbn=978-0-534-40653-0 |page=497}} 129. ^{{cite journal |title=Hemichordate genomes and deuterostome origins |url=http://www.nature.com/nature/journal/v527/n7579/full/nature16150.html |journal=Nature |date=26 November 2015 |pages=459–465 |volume=527 |issue=7579 |doi=10.1038/nature16150 |first=Oleg |last=Simakov |first2=Takeshi |last2=Kawashima |first3=Ferdinand |last3=Marlétaz |first4=Jerry |last4=Jenkins |first5=Ryo |last5=Koyanagi |first6=Therese |last6=Mitros |first7=Kanako |last7=Hisata |first8=Jessen |last8=Bredeson |first9=Eiichi |last9=Shoguchi |pmid=26580012 |pmc=4729200 |bibcode=2015Natur.527..459S}} 130. ^{{cite book |last=Dawkins |first=Richard |authorlink=Richard Dawkins |title=The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution |year=2005 |publisher=Houghton Mifflin Harcourt |isbn=978-0-618-61916-0 |page=381}} 131. ^{{cite book |last1=Prewitt |first1=Nancy L. |last2=Underwood |first2=Larry S. |last3=Surver |first3=William |title=BioInquiry: making connections in biology |year=2003 |publisher=John Wiley |isbn=978-0-471-20228-8 |page=289}} 132. ^{{cite book |title=Parasites in social insects |year=1998 |publisher=Princeton University Press |isbn=978-0-691-05924-2 |last=Schmid-Hempel |first=Paul |page=75}} 133. ^{{cite book|author1=Miller, Stephen A. |author2=Harley, John P.|title=Zoology |url=https://books.google.com/books?id=BWZFAQAAIAAJ |year=2006 |publisher=McGraw-Hill Higher Education |page=173}} 134. ^{{cite journal |pmid=10781038 |pmc=34316 |jstor=122407 |bibcode=2000PNAS...97.4434S |doi=10.1073/pnas.97.9.4434 |title = Evolution of the bilaterian body plan: What have we learned from annelids? |journal=Proceedings of the National Academy of Sciences |volume=97 |issue=9 |pages=4434–4437 |year = 2000|last1 = Shankland |first1 = M. |last2=Seaver |first2=E.C. }} 135. ^1 {{cite journal | last=Struck | first=Torsten H. | last2=Wey-Fabrizius | first2=Alexandra R. | last3=Golombek | first3=Anja | last4=Hering | first4=Lars | last5=Weigert | first5=Anne | last6=Bleidorn | first6=Christoph | last7=Klebow | first7=Sabrina | last8=Iakovenko | first8=Nataliia | last9=Hausdorf | first9=Bernhard | last10=Petersen | first10=Malte | last11=Kück | first11=Patrick | last12=Herlyn | first12=Holger | last13=Hankeln | first13=Thomas | title=Platyzoan Paraphyly Based on Phylogenomic Data Supports a Noncoelomate Ancestry of Spiralia | journal=Molecular Biology and Evolution | volume=31 | issue=7 | date=2014 | doi=10.1093/molbev/msu143 | pages=1833–1849 | pmid=24748651}} 136. ^{{Cite journal |last=Fröbius |first=Andreas C. |last2=Funch |first2=Peter |date=April 2017 |title=Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans |url=http://www.nature.com/articles/s41467-017-00020-w|journal=Nature Communications |volume=8 |issue=1 |pages=9 |doi=10.1038/s41467-017-00020-w|pmid=28377584 |pmc=5431905 |bibcode=2017NatCo...8....9F }} 137. ^{{cite journal| last1=Hervé | first1=Philippe | last2=Lartillot | first2=Nicolas | last3=Brinkmann | first3=Henner | date=May 2005 | title=Multigene Analyses of Bilaterian Animals Corroborate the Monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia | journal=Molecular Biology and Evolution | volume=22 | issue=5| pages=1246–1253 | doi=10.1093/molbev/msi111 | pmid=15703236}} 138. ^{{cite web |title=Introduction to the Lophotrochozoa {{!}} Of molluscs, worms, and lophophores… |url=http://www.ucmp.berkeley.edu/phyla/lophotrochozoa.html |publisher=UCMP Berkeley |accessdate=28 February 2018}} 139. ^{{cite journal |last1=Giribet |first1=G. |last2=Distel |first2=D.L. |last3=Polz |first3=M. |last4=Sterrer |first4=W. |last5=Wheeler |first5=W.C. |year=2000 |title=Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology |journal=Syst Biol |volume=49 |issue=3 |pages=539–562 |doi=10.1080/10635159950127385 |pmid=12116426}} 140. ^{{cite journal |title=Phylogenetic Relationships of Annelids, Molluscs, and Arthropods Evidenced from Molecules and Morphology |journal=Journal of Molecular Evolution |volume=43 |issue=3 |pages=207–215 |date=September 1996 |doi=10.1007/PL00006079 |pmid=8703086 |last1=Kim |first1=Chang Bae |last2=Moon |first2=Seung Yeo |last3=Gelder |first3=Stuart R. |last4=Kim |first4=Won}} 141. ^{{cite book |last=Leroi |first=Armand Marie |authorlink=Armand Marie Leroi |title=The Lagoon: How Aristotle Invented Science |titlelink=Aristotle's Lagoon |publisher=Bloomsbury |date=2014 |isbn=978-1-4088-3622-4 |pages=111–119, 270–271}} 142. ^{{cite book |last=Linnaeus |first=Carl |authorlink=Carl Linnaeus |title=Systema naturae per regna tria naturae :secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. |edition=10th |publisher=Holmiae (Laurentii Salvii) |year=1758 |url=https://www.biodiversitylibrary.org/bibliography/542 |accessdate=22 September 2008 |language=Latin |archiveurl=https://web.archive.org/web/20081010032456/http://www.biodiversitylibrary.org/bibliography/542 |archivedate=10 October 2008 |deadurl=no}} 143. ^{{cite web |title=Espèce de |url=http://dictionnaire.reverso.net/francais-anglais/esp%C3%A8ce%20de%20cr%C3%A9tin |publisher=Reverso Dictionnnaire |accessdate=1 March 2018}} 144. ^1 {{cite book |last=Gould |first=Stephen Jay |authorlink=Stephen Jay Gould |title=The Lying Stones of Marrakech |url=https://books.google.com/books?id=wApMpVmi-5gC&pg=PA130 |year=2011 |publisher=Harvard University Press |isbn=978-0-674-06167-5 |pages=130–134}} 145. ^{{cite book |author=De Wit, Hendrik C.D. |title=Histoire du Développement de la Biologie, Volume III |publisher=Presses Polytechniques et Universitaires Romandes |date=1994 |pages=94–96 |isbn=978-2-88074-264-5}} 146. ^{{cite book |last1=Haeckel |first1=Ernst |authorlink=Ernst Haeckel |title=Anthropogenie oder Entwickelungsgeschichte des menschen |year=1874 |page=202 |language=German}} 147. ^1 {{cite book |last=Valentine |first=James W. |title=On the Origin of Phyla |url=https://books.google.com/books?id=DMBkmHm5fe4C&pg=PA8 |year=2004 |publisher=University of Chicago Press |isbn=978-0-226-84548-7 |pages=7–8}} 148. ^{{cite book |last1=Hutchins |first1=Michael |title=Grzimek's Animal Life Encyclopedia |year=2003 |edition=2nd |publisher=Gale |isbn=978-0-7876-5777-2 |page=3}} 149. ^1 {{cite web |url=http://www.fao.org/fishery/ |title=Fisheries and Aquaculture |publisher=FAO |accessdate=8 July 2016}} 150. ^{{cite book |last1=Helfman |first1=Gene S. |title=Fish Conservation: A Guide to Understanding and Restoring Global Aquatic Biodiversity and Fishery Resources |date=2007 |publisher=Island Press |isbn=978-1-59726-760-1 |page=11}} 151. ^{{cite web |title=World Review of Fisheries and Aquaculture |url=http://www.fao.org/docrep/016/i2727e/i2727e01.pdf |website=fao.org |publisher=FAO |accessdate=13 August 2015}} 152. ^{{Cite journal | title = Shellfish climbs up the popularity ladder | journal=Seafood Business | url=http://www.highbeam.com/doc/1G1-85675992.html | archive-url=https://web.archive.org/web/20121105143157/http://www.highbeam.com/doc/1G1-85675992.html | dead-url=yes | archive-date=2012-11-05 | accessdate=8 July 2016| date=January 2002 }} 153. ^1 {{Cite journal |title=Graphic detail Charts, maps and infographics. Counting chickens |journal=The Economist |url=https://www.economist.com/blogs/dailychart/2011/07/global-livestock-counts |accessdate=23 June 2016 |date=27 July 2011}} 154. ^{{cite web |author=Cattle Today |url=http://cattle-today.com/ |title=Breeds of Cattle at CATTLE TODAY |publisher=Cattle-today.com |accessdate=15 October 2013}} 155. ^{{cite web |last1=Lukefahr |first1=S.D. |last2=Cheeke |first2=P.R. |title=Rabbit project development strategies in subsistence farming systems |url=http://www.fao.org/docrep/U4900T/u4900T0m.htm |publisher=Food and Agriculture Organization |accessdate=23 June 2016}} 156. ^{{cite web |title=Animals Used for Clothing |url=http://www.peta.org/issues/animals-used-for-clothing/ |publisher=PETA |accessdate=8 July 2016}} 157. ^{{cite web |title=Ancient fabrics, high-tech geotextiles |url=http://www.naturalfibres2009.org/en/fibres/ |publisher=Natural Fibres |accessdate=8 July 2016}} 158. ^{{cite web |url=http://www.fao.org/docrep/v8879e/v8879e09.htm |title=Cochineal and Carmine |work=Major colourants and dyestuffs, mainly produced in horticultural systems |publisher=FAO |accessdate=June 16, 2015}} 159. ^{{cite web |url=http://www.fda.gov/ForIndustry/ColorAdditives/GuidanceComplianceRegulatoryInformation/ucm153038.htm |title=Guidance for Industry: Cochineal Extract and Carmine |publisher=FDA |accessdate=6 July 2016}} 160. ^{{cite news |title=How Shellac Is Manufactured |url=http://nla.gov.au/nla.news-article55073762 |accessdate=17 July 2015 |publisher=The Mail (Adelaide, SA : 1912–1954) |date=18 Dec 1937}} 161. ^{{cite journal |author1=Pearnchob, N. |author2=Siepmann, J. |author3=Bodmeier, R. |year=2003 |title=Pharmaceutical applications of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets |journal=Drug Development and Industrial Pharmacy |volume=29 |issue=8 |pages=925–938 |pmid=14570313 |doi=10.1081/ddc-120024188}} 162. ^{{cite book |last=Barber |first=E.J.W. |title=Prehistoric Textiles |year=1991 |publisher=Princeton University Press |isbn=978-0-691-00224-8 |pages=230–231}} 163. ^{{cite book |author=Munro, John H. |title=Medieval Woollens: Textiles, Technology, and Organisation |editor=Jenkins, David |year=2003 |work=The Cambridge History of Western Textiles |publisher=Cambridge University Press |isbn=978-0-521-34107-3 |pages=214–215}} 164. ^{{cite book |last=Pond |first=Wilson G. |title=Encyclopedia of Animal Science |url=https://books.google.com/books?id=1SQl7Ao3mHoC&pg=PA248 |year=2004 |publisher=CRC Press |isbn=978-0-8247-5496-9 |pages=248–250}} 165. ^{{cite web |title=Genetics Research |url=http://www.aht.org.uk/cms-display/genetics.html |publisher=Animal Health Trust |accessdate=24 June 2016}} 166. ^{{cite web |title=Drug Development |url=http://www.animalresearch.info/en/drug-development/ |publisher=Animal Research.info |accessdate=24 June 2016}} 167. ^{{cite web |title=Animal Experimentation |url=http://www.bbc.co.uk/ethics/animals/using/experiments_1.shtml |publisher=BBC |accessdate=8 July 2016}} 168. ^{{cite web |title=EU statistics show decline in animal research numbers |url=http://speakingofresearch.com/2013/12/12/eu-statistics-show-decline-in-animal-research-numbers/ |publisher=Speaking of Research |year=2013 |accessdate=January 24, 2016}} 169. ^{{cite web |title=Vaccines and animal cell technology |url=http://www.actip.org/library/vaccines-and-animal-cell-technology/ |publisher=Animal Cell Technology Industrial Platform |accessdate=9 July 2016}} 170. ^{{cite web |title=Medicines by Design |url=https://publications.nigms.nih.gov/medbydesign/chapter3.html |publisher=National Institute of Health |accessdate=9 July 2016}} 171. ^{{cite book |author=Fergus, Charles |title=Gun Dog Breeds, A Guide to Spaniels, Retrievers, and Pointing Dogs |publisher=The Lyons Press |date=2002 |isbn=978-1-58574-618-7}} 172. ^{{cite web |title=History of Falconry |url=http://www.thefalconrycentre.co.uk/bird-info/conservation/nocturnal-raptors/history-falconry/ |publisher=The Falconry Centre |accessdate=22 April 2016}} 173. ^{{cite book |author=King, Richard J. |title=The Devil's Cormorant: A Natural History |url=https://books.google.com/books?id=ucGyAAAAQBAJ&pg=PA9 |date=2013 |publisher=University of New Hampshire Press |isbn=978-1-61168-225-0 |page=9}} 174. ^{{cite web |url=http://amphibiaweb.org/lists/Dendrobatidae.shtml |title=AmphibiaWeb – Dendrobatidae |publisher=AmphibiaWeb |accessdate=2008-10-10}} 175. ^{{cite web | url=http://animaldiversity.ummz.umich.edu/site/accounts/information/Dendrobatidae.html | title=Dendrobatidae | accessdate=9 July 2016 | author=Heying, H. | year=2003 | publisher=Animal Diversity Web}} 176. ^{{cite web |title=Other bugs |url=http://www.keepinginsects.com/cockroaches-locusts-ants/ |publisher=Keeping Insects |accessdate=8 July 2016}} 177. ^{{cite web |last1=Kaplan |first1=Melissa |title=So, you think you want a reptile? |url=http://www.anapsid.org/parent.html |publisher=Anapsid.org |accessdate=8 July 2016}} 178. ^{{cite web |title=Pet Birds |url=http://www.humanesociety.org/animals/pet_birds/ |publisher=PDSA |accessdate=8 July 2016}} 179. ^{{cite web |url=http://www.shea-online.org/Portals/0/PDFs/Animals%20in%20Healthcare%20Facilities.pdf |title=Animals in Healthcare Facilities |year=2012 |deadurl=yes |archiveurl=https://web.archive.org/web/20160304102728/http://www.shea-online.org/Portals/0/PDFs/Animals%20in%20Healthcare%20Facilities.pdf |archivedate=4 March 2016 }} 180. ^{{cite web |last=The Humane Society of the United States |title=U.S. Pet Ownership Statistics |url=http://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html |accessdate=27 April 2012}} 181. ^{{cite web |last=USDA |title=U.S. Rabbit Industry profile |url=http://www.aphis.usda.gov/animal_health/emergingissues/downloads/RabbitReport1.pdf |accessdate=10 July 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20131020161216/http://www.aphis.usda.gov/animal_health/emergingissues/downloads/RabbitReport1.pdf |archivedate=20 October 2013 |df= }} 182. ^{{cite journal |title=The Role of Animals in Human Society |author=Plous, S. |date=1993 |doi=10.1111/j.1540-4560.1993.tb00906.x |journal=Journal of Social Issues |volume=49 |issue=1 |pages=1–9}} 183. ^{{cite book |last1=Hummel |first1=Richard |title=Hunting and Fishing for Sport: Commerce, Controversy, Popular Culture |date=1994 |publisher=Popular Press |isbn=978-0-87972-646-1}} 184. ^{{cite news |last1=Jones |first1=Jonathan |title=The top 10 animal portraits in art |url=https://www.theguardian.com/artanddesign/jonathanjonesblog/2014/jun/27/top-10-animal-portraits-in-art |accessdate=24 June 2016 |agency=The Guardian |date=27 June 2014}} 185. ^{{Cite journal|last1=Paterson |first1=Jennifer |title=Animals in Film and Media |url=http://www.oxfordbibliographies.com/view/document/obo-9780199791286/obo-9780199791286-0044.xml |publisher=Oxford Bibliographies |accessdate=24 June 2016 |date=29 October 2013 |doi=10.1093/obo/9780199791286-0044}} 186. ^{{cite book |last1=Gregersdotter |first1=Katarina |last2=Höglund |first2=Johan |last3=Hållén |first3=Nicklas |title=Animal Horror Cinema: Genre, History and Criticism |url=https://books.google.com/books?id=hV-hCwAAQBAJ&pg=PA147 |date=2016 |publisher=Springer |isbn=978-1-137-49639-3 |page=147}} 187. ^{{cite book |last1=Warren |first1=Bill |last2=Thomas |first2=Bill |title=Keep Watching the Skies!: American Science Fiction Movies of the Fifties, The 21st Century Edition |url=https://books.google.com/books?id=B7kUCwAAQBAJ&pg=PT32 |date=2009 |publisher=McFarland |isbn=978-1-4766-2505-8 |page=32}} 188. ^{{cite book |last=Crouse |first=Richard |title=Son of the 100 Best Movies You've Never Seen |url=https://books.google.com/books?id=B5alnowvF3sC&pg=PT200 |year=2008 |publisher=ECW Press |isbn=978-1-55490-330-6 |page=200}} 189. ^1 {{cite book | last=Hearn | first=Lafcadio | authorlink=Lafcadio Hearn | year=1904 | title=Kwaidan: Stories and Studies of Strange Things | titlelink=Kwaidan: Stories and Studies of Strange Things | publisher=Dover | isbn=978-0-486-21901-1}} 190. ^{{Cite journal | url=http://quod.lib.umich.edu/cgi/t/text/text-idx?c=did;cc=did;rgn=main;view=text;idno=did2222.0001.694 | title=Butterfly |journal=Encyclopedia of Diderot and d'Alembert | accessdate=10 July 2016| date=January 2011 | last1=Louis | first1=Chevalier de Jaucourt (Biography) }} 191. ^Hutchins, M., Arthur V. Evans, Rosser W. Garrison and Neil Schlager (Eds) (2003) Grzimek's Animal Life Encyclopedia, 2nd edition. Volume 3, Insects. Gale, 2003. 192. ^{{cite book |author=Ben-Tor, Daphna |title=Scarabs, A Reflection of Ancient Egypt |location=Jerusalem |publisher=Israel Museum |date=1989 |isbn=978-965-278-083-6 |page=8}} 193. ^{{Cite news |last1=Biswas |first1=Soutik |title=Why the humble cow is India's most polarising animal |url=https://www.bbc.co.uk/news/world-asia-india-34513185 |publisher=BBC |accessdate=9 July 2016|work=BBC News |date=2015-10-15 }} 194. ^1 {{cite web |title=Deer |url=http://treesforlife.org.uk/forest/mythology-folklore/deer/ |publisher=Trees for Life |accessdate=23 June 2016}} 195. ^{{cite book |title=Hayagrīva: The Mantrayānic Aspect of Horse-cult in China and Japan |publisher=Brill Archive |page=9 |author=Robert Hans van Gulik}} 196. ^{{cite web |last1=Grainger |first1=Richard |title=Lion Depiction across Ancient and Modern Religions |url=https://lionalert.org/page/Lion_Depiction_Across_Ancient_and_Modern_Religions |publisher=Alert |accessdate=6 July 2016 |date=24 June 2012 |deadurl=yes |archiveurl=https://web.archive.org/web/20160923134807/https://lionalert.org/page/Lion_Depiction_Across_Ancient_and_Modern_Religions |archivedate=23 September 2016 }} 197. ^{{cite book |last1=Read |first1=Kay Almere |last2=Gonzalez |first2=Jason J. |year=2000 |title=Mesoamerican Mythology |publisher=Oxford University Press |pages=132–134}} 198. ^{{Cite journal |last=Wunn |first=Ina |date=January 2000 |title=Beginning of Religion |url=https://brill.com/abstract/journals/nu/47/4/article-p417_3.xml |journal=Numen |volume=47 |issue=4 |pages=417–452 |doi=10.1163/156852700511612}} 199. ^{{cite book |author=McCone, Kim R. |title=Hund, Wolf, und Krieger bei den Indogermanen |editor=Meid, W. |work=Studien zum indogermanischen Wortschatz |location=Innsbruck |date=1987 |pages=101–154}} 200. ^{{cite book |author=Lau, Theodora |title=The Handbook of Chinese Horoscopes |pages=2–8, 30–35, 60–64, 88–94, 118–124, 148–153, 178–184, 208–213, 238–244, 270–278, 306–312, 338–344 |publisher=Souvenir Press |location=New York |year=2005}} 201. ^{{cite book |last=Tester |first=S. Jim |title=A History of Western Astrology |url=https://books.google.com/books?id=L0HSvH96alIC&pg=PA31 |year=1987 |publisher=Boydell & Brewer |isbn=978-0-85115-446-6 |pages=31–33 and passim}} External links
3 : Animals|Kingdoms (biology)|Cryogenian first appearances |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。