请输入您要查询的百科知识:

 

词条 Assembly rules
释义

  1. Rules

     Rule 1: Forbidden species combinations  Rule 2: Reduced niche overlap 

  2. Testing

  3. Alternative theory

  4. Notes

     References 
{{refimprove|date=February 2012}}

Community assembly rules are a set of controversial rules in ecology, first proposed by Jared Diamond.[1]

Rules

The rules were developed after more than a decade of research into the avian assemblages on islands near New Guinea. The rules assert that competition is responsible for determining the patterns of assemblage composition. Diamond's paper sparked nearly two decades worth of controversy in the literature, from the late seventies through the late nineties{{Citation needed|date=September 2011}} and is considered a turning point in community ecology{{Citation needed|date=September 2011}}. The disagreement continues to this day.{{Citation needed|date=September 2011}}

Rule 1: Forbidden species combinations

The first rule is "forbidden species combinations". Diamond's hypothesis was that competition, not random immigration, was the main force structuring the species composition of islands.

So for example, the Bismarck black myzomela (Myzomela pammelaena) excludes the black sunbird (Nectarinia sericea). The Bismarck black myzomela lives on 23 of the 41 surveyed islands in the Bismarck Archipelago, but not on any of the 14 islands inhabited by the black sunbird. The two birds are about the same size, and both use their curved bills to sip nectar; Diamond argued that competition affects their distribution.[2]

Rule 2: Reduced niche overlap

Case tested the assembly rule that species occurring together on islands should have less niche overlap than random assemblages because they have undergone specialization.[3] His study measured niche overlap of lizards on 37 islands near Baja California and compared niche overlap to the median niche overlap of computer generated random species assemblages. Case found that 30 of the 37 islands had lower niche overlap than the random assemblages and that some of the competition is due to interspecific competition.

Testing

Testing the assembly rules is a complex process that often uses computer simulations to compare experimental data with characteristics of random assemblages of species. The rules are generally regarded as hypotheses that need to be tested on an individual basis, not as accepted conclusions.

Alternative theory

As a reaction to the assembly rules controversy, ecologist Stephen Hubbell proposed that the abundance and diversity of species in a community is determined mainly by random dispersal, speciation, and extinction. This came to be known as the unified neutral theory of biodiversity.[4]

Notes

1. ^{{cite book |title=Ecology and Evolution of Communities |editor=Cody ML, Diamond JM |publisher=Belknap Press, Harvard University Press |location=Cambridge, MA |year=1975 |url=http://www.hup.harvard.edu/catalog.php?isbn=9780674224445 |pages=342–444}}
2. ^Erik Stokstad (2009) 'On the Origin of Ecological Structure', Science 2 Oct 2009 pp. 33–35.
3. ^{{cite journal |last=Case |first=Ted |year=1983 |title=Niche overlap and the assembly of island lizard communities |jstor=3544102 |journal=Oikos |volume=41 |issue=3 |pages=427–433 |doi=10.2307/3544102}}
4. ^Stephen Hubbell, 2001.

References

  • {{cite journal |author=Gotelli |title=ECOLOGY: How Do Communities Come Together? |journal=Science |year=1999 |volume=286 |issue=5445 |pages=1684–1685 |doi=10.1126/science.286.5445.1684a}}
  • Stephen Hubbell. The Unified Neutral Theory of Biodiversity and Biogeography. 2001. Princeton Monographs in Population biology, Princeton University Press.Princeton, NJ. 375 pp. ([https://archive.is/20121215053636/http://shubbell.eeb.ucla.edu/publications.php List of Publications])
{{modelling ecosystems|expanded=other}}{{DEFAULTSORT:Assembly Rules}}

3 : Ecological theories|Rules|Evolutionary biology

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/17 9:02:09