请输入您要查询的百科知识:

 

词条 Atmospheric radiative transfer codes
释义

  1. Methods

  2. Applications

  3. Table of models

      Molecular absorption databases  

  4. See also

  5. References

  6. External links

An Atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere, such as the Earth's.

Methods

At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation.

For an instrument response, this is then convolved with the spectral response of the instrument. A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so.

Applications

Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation.[1] Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols, or clouds. In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere, one calculates heating rates, radiative fluxes, and radiances.

There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 1980s - early 2000s. The more current (2011) project, Continual Intercomparison of Radiation Codes, emphasises also using observations to define intercomparison cases.

[2]

Table of models

Name
Website
References
UV
Visible
Near IR
Thermal IR
mm/sub-mm
Microwave
line-by-line/band
Scattering
Polarised
Geometry
License
Notes
4A/OP   Scott and Chédin (1981)[3] {{no}} {{yes}} {{yes}} {{yes}} {{no}} {{no}} line-by-line {{yes}} {{yes}} freeware
6S/6SV1   Kotchenova et al. (1997)[4] {{no}} {{yes}} {{yes}} {{no}} {{no}} {{no}} band {{dunno}} {{yes}} non-Lambertian surface
ARTS   Eriksson et al. (2011)[5] {{no}} {{no}} {{no}} {{yes}} {{yes}} {{yes}} line-by-line {{yes}} {{yes}} spherical 1D, 2D, 3D GPL
BTRAM   Chapman et al. (2009)[6] {{no}} {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} line-by-line {{no}} {{no}} 1D,plane-parallel proprietary commercial
COART [https://clouds.larc.nasa.gov/jin/coart.html] Jin et al. (2006)[7] {{yes}} {{yes}} {{yes}} {{yes}} {{no}} {{no}} {{yes}} {{no}} plane-parallel free
CRM   {{no}} {{yes}} {{yes}} {{yes}} {{no}} {{no}} band {{yes}} {{no}} freely available Part of NCAR Community Climate Model
CRTM   {{no}} {{yes}} {{yes}} {{yes}} {{no}} {{yes}} band {{yes}} {{dunno}}
DART radiative transfer model   Gastellu-Etchegorry et al. (1996)[8] {{no}} {{yes}} {{yes}} {{yes}} {{no}} {{no}} band {{yes}} {{dunno}} spherical 1D, 2D, 3D free for research with license non-Lambertian surface, landscape creation and import
DISORT   Stamnes et al. (1988)[9]Lin et al. (2015)[10] {{yes}} {{yes}} {{yes}} {{yes}} {{yes}}radar}} {{yes}} {{no}} plane-parallel or pseudo-spherical (v4.0) free with restrictions discrete ordinate, used by others
FARMS   Xie et al. (2016)[11]λ>0.2 µm}} {{yes}} {{yes}} {{no}} {{no}} {{no}} band {{yes}} {{no}} plane-parallel free Rapidly simulating downwelling solar radiation at land surface for solar energy and climate research
Fu-Liou [https://web.archive.org/web/20100527152529/http://snowdog.larc.nasa.gov/rose/fu200503/flp200503_web.htm] Fu and Liou (1993)[12] {{no}} {{yes}} {{yes}} {{dunno}} {{no}} {{no}} {{yes}} {{dunno}} plane-parallel usage online, source code available web interface online at [13]
FUTBOLIN Martin-Torres (2005)[14]λ>0.3 µm}}{{yes}}{{yes}}{{yes}}λ<1000 µm}}{{no}} line-by-line {{yes}} {{dunno}} spherical or plane-parallel handles line-mixing, continuum absorption and NLTE
GENLN2 [https://web.archive.org/web/20100609174702/http://acd.ucar.edu/~edwards/] Edwards (1992)[15]{{dunno}}{{dunno}}{{dunno}}{{dunno}}{{dunno}}{{dunno}} line-by-line{{dunno}}{{dunno}}
KARINE   Eymet (2005)[16]{{no}}{{no}}colspan=2 {{yes}}{{no}}{{no}} {{dunno}} {{dunno}} plane-parallel GPL
KCARTA  {{dunno}}{{dunno}}{{yes}}{{yes}}{{dunno}}{{dunno}} line-by-line{{yes}}{{dunno}}plane-parallelfreely available AIRS reference model
KOPRA  {{no}}{{no}}{{no}}{{yes}}{{no}}{{no}} {{dunno}} {{dunno}}
LBLRTM   Clough et al. (2005)[17] {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} line-by-line {{dunno}} {{dunno}}
LEEDR   Fiorino et al. (2014)[18]λ>0.2 µm}}{{yes}}{{yes}}{{yes}}{{yes}}{{yes}} band or line-by-line {{yes}} {{dunno}} spherical US government softwareextended solar & lunar sources;

single & multiple scattering

LinePak   Gordley et al. (1994)[19] {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} line-by-line {{no}} {{no}}spherical (Earth and Mars), plane-parallelfreely available with restrictionsweb interface, SpectralCalc
libRadtran   Mayer and Kylling (2005)[20]{{yes}}{{yes}}{{yes}}{{yes}}{{no}}{{no}} band or line-by-line {{yes}} {{yes}} plane-parallel or pseudo-spherical GPL
MATISSE [https://web.archive.org/web/20110721014407/http://matisse.onera.fr/index_english.htm] Caillault et al. (2007)[21]{{no}}{{yes}}{{yes}}{{yes}}{{no}}{{no}} band {{yes}} {{dunno}} proprietary freeware
MCARaTS[22]GPL3-D Monte Carlo
MODTRAN   Berk et al. (1998)[23]ṽ<50,000 cm−1}}{{yes}}{{yes}}{{yes}}{{yes}}{{yes}} band or line-by-line {{yes}} {{dunno}} proprietary commercial solar and lunar source, uses DISORT
MOSART [https://web.archive.org/web/20130401085541/http://www.cpi.com/products/mosart.html] Cornette (2006)[24]λ>0.2 µm}}{{yes}}{{yes}}{{yes}}{{yes}}{{yes}} band {{yes}} {{no}} freely available
PUMAS   {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} Line-by-line and correlated-k {{yes}} {{yes}} plane-parallel and pseudo-spherical Free/online tool
RFM  {{no}}{{no}}{{no}}{{yes}}{{no}}{{no}} line-by-line {{dunno}} {{dunno}} available on request MIPAS reference model based on GENLN2
RRTM/RRTMG   Mlawer, et al. (1997)[25]ṽ<50,000 cm−1}}{{yes}}{{yes}}{{yes}}{{yes}}ṽ>10 cm−1}} {{dunno}} {{dunno}} free of charge uses DISORT
RTMOM {{dead link>date=December 2016}}λ>0.25 µm}}{{yes}}{{yes}}λ<15 µm}}{{no}}{{no}} line-by-line {{yes}} {{dunno}} plane-parallel freeware
RTTOV   Saunders et al. (1999)[26]λ>0.4 µm}} {{Yes}} {{Yes}} {{Yes}} {{Yes}} {{Yes}} band {{Yes}} {{dunno}} available on request
SASKTRAN[27]Bourassa et al.

(2008)[28]

Zawada et al.

(2015)[29]

{{yes}} {{Yes}} {{Yes}}{{no}}{{no}}{{no}}line-by-line {{yes}} {{yes}}spherical 1D, 2D, 3D, plane-parallelavailable on requestdiscrete and Monte Carlo options
SBDART [https://web.archive.org/web/20100708003803/http://arm.mrcsb.com/sbdart/] Ricchiazzi et al. (1998)[30] {{yes}} {{yes}} {{yes}} {{dunno}} {{no}} {{no}} {{yes}} {{dunno}} plane-parallel uses DISORT
SCIATRAN   Rozanov et al. (2005)

,[31]

Rozanov et al. (2014)[32]
{{yes}}{{yes}}{{yes}}{{no}}{{no}}{{no}} band or line-by-line {{yes}} {{yes}} plane-parallel or pseudo-spherical or spherical
SHARM Lyapustin (2002)[33] {{no}} {{yes}} {{yes}} {{no}} {{no}} {{no}} {{yes}} {{dunno}}
SHDOM   Evans (2006)[34] {{dunno}} {{dunno}} {{yes}} {{yes}} {{dunno}} {{dunno}} {{yes}} {{dunno}}
SMART-G [https://www.hygeos.com/smartg] Ramon et al. (2019)[35] {{yes}} {{yes}} {{yes}} {{no}} {{no}} {{no}} band or line-by-line {{yes}} {{yes}} plane-parallel or spherical free for non-commercial purposes Monte-Carlo code parallelized by GPU (CUDA). Atmosphere or/and ocean options
Streamer, Fluxnet  [36] Key and Schweiger (1998)[37]{{no}}{{no}}λ>0.6 mm}}λ<15 mm}}{{no}}{{no}} band {{yes}} {{dunno}} plane-parallel Fluxnet is fast version of STREAMER using neural nets
XRTM   {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} {{yes}} plane-parallel and pseudo-spherical GPL
Name Website References UV VIS Near IR Thermal IR Microwave mm/sub-mm line-by-line/band Scattering Polarised Geometry License Notes

Molecular absorption databases

For a line-by-line calculation, one needs characteristics of the spectral lines, such as the line centre, the intensity, the lower-state energy, the line width and the shape.

Name Author Description
HITRAN[38] Rothman et al. (1987, 1992, 1998, 2003, 2005, 2009, 2013, 2017) HITRAN is a compilation of molecular spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere. The original version was created at the Air Force Cambridge Research Laboratories (1960's). The database is maintained and developed at the Harvard-Smithsonian Center for Astrophysics in Cambridge MA, USA.
GEISA[39] Jacquinet-Husson et al. (1999, 2005, 2008) GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) is a computer-accessible spectroscopic database, designed to facilitate accurate forward radiative transfer calculations using a line-by-line and layer-by-layer approach. It was started in 1974 at Laboratoire de Météorologie Dynamique (LMD/IPSL) in France. GEISA is maintained by the ARA group at LMD (Ecole Polytechnique) for its scientific part and by the ETHER group (CNRS Centre National de la Recherche Scientifique-France) at IPSL (Institut Pierre Simon Laplace) for its technical part. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board of the METOP European satellite) through the GEISA/IASI database derived from GEISA.

See also

  • Discrete dipole approximation codes
  • Codes for electromagnetic scattering by cylinders
  • Codes for electromagnetic scattering by spheres
  • Optical properties of water and ice

References

Footnotes
1. ^R.W. Andrews, J.M. Pearce, [https://dx.doi.org/10.1016/j.solener.2013.01.030 The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance], Solar Energy, 91,233–241 (2013). DOI:10.1016/j.solener.2013.01.030 [https://www.academia.edu/3081684/The_effect_of_spectral_albedo_on_amorphous_silicon_and_crystalline_silicon_solar_photovoltaic_device_performance open access]
2. ^Continual Intercomparison of Radiation Codes
3. ^{{Cite journal | doi = 10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2 | last1 = Scott | first1 = N. A. | last2 = Chedin | title = A fast line-by- line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas | journal = J. Appl. Meteorol. | volume = 20 | bibcode=1981JApMe..20..802S | year = 1981 | pages = 802–812 | first2 = A. | issue = 7}}
4. ^{{Cite journal| last1 = Kotchenova | first1 = S. Y. | last2 = Vermote | first2 = E. F. | last3 = Matarrese | first3 = R | last4 = Klemm | first4 = F. J. | title = Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance | journal = Applied Optics | volume = 45 | issue = 26 | pages = 6762–6774 | doi=10.1364/AO.45.006762 | year = 2006 | ref = kotchenova1997 | pmid=16926910|bibcode = 2006ApOpt..45.6762K | citeseerx = 10.1.1.488.9804 }}
5. ^{{Cite journal | last1 = Eriksson | first1 = P. | last2 = Buehler | first2 = S. A. | last3 = Davis | first3 = C.P. | last4 = Emde | first4 = C. | last5 = Lemke | first5 = O. | journal = Journal of Quantitative Spectroscopy and Radiative Transfer | title = ARTS, the atmospheric radiative transfer simulator, Version 2 | volume = 112 | pages = 1551–1558 | issue=10 | year = 2011 | url=http://radiativetransfer.org/docs/arts-2-0-paper.pdf | access-date=2016-11-02 | doi=10.1016/j.jqsrt.2011.03.001 | ref = eriksson2011| bibcode = 2011JQSRT.112.1551E}}
6. ^{{Cite journal | last1 = Chapman | first1 = I. M. | last2 = Naylor | first2 = D. A. | last3 = Gom | first3 = B. G. | last4 = Querel | first4 = R. R. | last5 = Davis-Imhof | first5 = P. | journal = The 30th Canadian Symposium on Remote Sensing | title = BTRAM: An Interactive Atmospheric Radiative Transfer Model | volume = 30 | pages = 22–25 | year = 2009 | ref = chapman2009}}
7. ^{{Cite journal | last1 = Jin | first1 = Z. | last2 = Charlock | first2 = T.P. | last3 = Rutledge | first3 = K. | last4 = Stamnes | first4 = K. | last5 = Wang | first5 = Y. | title = An analytical solution of radiative transfer in the coupled atmosphere-ocean system with rough surface | journal = Appl. Opt. | volume = 45 | issue = 28 | year = 2006 | pages = 7443–7455 | doi=10.1364/AO.45.007443 | ref = jin2006|bibcode = 2006ApOpt..45.7443S }}
8. ^{{Cite journal | last1 = Gastellu-Etchegorry | first1 = JP | last2 = Demarez | first2 = V | last3 = Pinel | first3 = V | last4 = Zagolski | first4 = F | title = Modelling radiative transfer in heterogeneous 3-D vegetation canopies | journal = Rem. Sens. Env. | volume = 58 | issue = 2 | year = 1996 | pages = 131–156 |bibcode = 1996RSEnv..58..131G |doi = 10.1016/0034-4257(95)00253-7 | url = http://hal.ird.fr/ird-00405222/document}}
9. ^{{Cite journal | last1 = Stamnes | first1 = Knut | last2 = Tsay | first2 = S. C. | last3 = Wiscombe | first3 = W. | last4 = Jayaweera | first4 = Kolf | title = Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media | journal = Appl. Opt. | volume = 27 | issue = 12 | year = 1988 | pages = 2502–2509 | doi=10.1364/AO.27.002502 | pmid = 20531783 | ref = stamnes1988|bibcode = 1988ApOpt..27.2502S }}
10. ^{{Cite journal | last1 = Lin | first1 = Zhenyi | last2 = Stamnes | first2 = S. | last3 = Jin | first3 = Z. | last4 = Laszlo | first4 = I. | last5 = Tsay | first5 = S. C. | last6 = Wiscombe | first6 = W. | title = Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool | journal = Journal of Quantitative Spectroscopy and Radiative Transfer | volume = 157 | issue = 12 | year = 2015 | pages = 119–134 | doi = 10.1016/j.jqsrt.2015.02.014 | ref = lin2015| bibcode = 2015JQSRT.157..119L }}
11. ^{{Cite journal | doi = 10.1016/j.solener.2016.06.003 | last1 = Xie | first1 = Y. | last2 = Sengupta | first2 = M. | last3 = Dudhia | first3 = J. | title = A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation | journal = Solar Energy | volume = 135 | year = 2016 | pages = 435–445 | ref = Xie2016|bibcode = 2016SoEn..135..435X }}
12. ^{{Cite journal | doi = 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2 | last1 = Fu | first1 = Q. | last2 = Liou | first2 = K.-N | title = Parameterization of the radiative properties of cirrus clouds | journal = J. Atmos. Sci. | volume = 50 | year = 1993 | pages = 2008–2025 |bibcode=1993JAtS...50.2008F | ref = Fu1993 | issue = 13 }}
13. ^{{cite web|url=http://snowdog.larc.nasa.gov/cgi-bin/rose/flp200503/flp200503.cgi |title=Archived copy |accessdate=2010-07-07 |deadurl=yes |archiveurl=https://web.archive.org/web/20100527145310/http://snowdog.larc.nasa.gov/cgi-bin/rose/flp200503/flp200503.cgi |archivedate=2010-05-27 |df= }}
14. ^{{Cite journal | last1 = Martin-Torres | first1 = F. J. | last2 = Kutepov | first2 = A. | last3 = Dudhia | first3 = A. | last4 = Gusev | first4 = O. | last5 = Feofilov | first5 = A.G. | title = Accurate and fast computation of the radiative transfer absorption rates for the infrared bands in the atmosphere of Titan | journal = Geophysical Research Abstracts | bibcode = 2003EAEJA.....7735M | year = 2003 | page = 7735}}
15. ^Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.
16. ^KARINE: a tool for infrared radiative transfer analysis in planetary atmospheres par V. Eymet. Note technique interne, Laboratoire d'Energétique, 2005.
17. ^{{cite journal | doi = 10.1016/j.jqsrt.2004.05.058 | last1 = Clough | first1 = S. A. | last2 = Shephard | first2 = M. W. | last3 = Mlawer | first3 = E. J. | last4 = Delamere | first4 = J. S. | last5 = Iacono | first5 = M. J. | last6 = Cady-Pereira | first6 = K. | last7 = Boukabara | first7 = S. | last8 = Brown | first8 = P. D. | journal = J. Quant. Spectrosc. Radiat. Transfer | title = Atmospheric radiative transfer modeling: a summary of the AER codes | volume = 91 | pages = 233–244 |bibcode=2005JQSRT..91..233C | year = 2005 | ref = clough2005 | issue = 2}}
18. ^{{cite journal | doi = 10.1175/JAMC-D-13-036.1 | last1 = Fiorino | first1 = S. T. | last2 = Randall | first2 = R. M. | last3 = Via | first3 = M. F. | last4 = Burley | first4 = J. L. | title = Validation of a UV-to-RF High-Spectral-Resolution Atmospheric Boundary Layer Characterization Tool | journal= J. Appl. Meteorol. Climatol. | volume= 53 | issue=1 | pages=136–156 | year=2014 | ref = fiorino2014|bibcode = 2014JApMC..53..136F }}
19. ^{{cite journal | last1 = Gordley | first1 = L. L. | last2 = Marshall | first2 = B. T. | journal = J. Quant. Spectrosc. Radiat. Transfer | title = LINEPAK: Algorithm for Modeling Spectral Transmittance and Radiance | volume = 52 | pages = 563–580 |bibcode=1994JQSRT..52..563C | year = 1994 | ref = gordley1994 | issue = 5 | doi=10.1016/0022-4073(94)90025-6| citeseerx = 10.1.1.371.5401 }}
20. ^{{cite journal | last1 = Mayer | first1 = B. | last2 = Kylling | first2 = A. | title = Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use | journal = Atmospheric Chemistry and Physics | volume = 5 | year = 2005 | pages = 1855–1877 | doi = 10.5194/acp-5-1855-2005 | url = http://www.atmos-chem-phys.net/5/1855/2005/ | ref = mayer2005 | issue = 7 }}
21. ^{{cite journal | last1 = Caillaut | first1 = K. | last2 = Fauqueux | first2 = S. | last3 = Bourlier | first3 = C. | last4 = Simoneau | first4 = P. | last5 = Labarre | first5 = L. | title = Multiresolution optical characteristics of rough sea surface in the infrared | journal = Applied Optics | volume = 46 | issue = 22 | pages = 5471–5481 |doi=10.1364/AO.46.005471 | pmid = 17676164 | year = 2007 | ref = caillout2007|bibcode = 2007ApOpt..46.5471C }}
22. ^{{cite web|url=https://sites.google.com/site/mcarats/home|title=MCARaTS|website=sites.google.com|access-date=2016-04-01}}
23. ^{{cite journal | doi = 10.1016/S0034-4257(98)00045-5 | last1 = Berk | first1 = A. | last2 = Bernstein | first2 = L. S. | last3 = Anderson | first3 = G. P. | last4 = Acharya | first4 = P. K. | last5 = Robertson | first5 = D. C. | last6 = Chetwynd | first6 = J. H. | last7 = Adler-Golden | first7 = S. M. | title = MODTRAN cloud and multiple scattering upgrades with application to AVIRIS | journal= Remote Sensing of Environment | volume= 65 | issue=3 | pages=367–375 | year=1998 | ref = berk1998|bibcode = 1998RSEnv..65..367B }}
24. ^{{cite journal | last1 = Cornette | first1 = William M. | title = Moderate Spectral Atmospheric Radiance and Transmittance (MOSART) Computer Code Version 2.00., Lexington, MA (2006) | journal= Proc. IEEE-GRSS/AFRL Atmospheric Transmission Modeling Conference, Lexington MA | year=2006 | ref = cornette2006}}
25. ^{{cite journal | last1 = Mlawer | first1 = E. J. | last2 = Taubman | first2 = S. J. | last3 = Brown | first3 = P. D. | last4 = Iacono | first4 = M. J. | last5 = Claugh | first5 = S. A. | title = RRTM, a validated correlated-k model for the longwave | journal = J. Geophys. Res. | volume = 102 | issue = 16 | pages = 663–682 |bibcode=1997JGR...10216663M | doi = 10.1029/97JD00237 | year = 1997 | ref = mlawer1997 }}
26. ^{{cite journal | last1 = Saunders | first1 = R. W. | last2 = Matricardi | first2 = M. | last3 = Brunel | first3 = P. | title = An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations | journal = Quart. J. Royal Meteorol. Soc. | volume = 125 | pages = 1407–1425 |bibcode=1999QJRMS.125.1407S | ref = saunders1999|doi = 10.1256/smsqj.55614 | year = 1999 | issue = 556 }}
27. ^{{Cite web|url=https://arg.usask.ca/docs/sasktran/|title=Welcome to SASKTRAN's documentation! — SASKTRAN 0.1.3 documentation|website=arg.usask.ca|language=en|access-date=2018-04-11}}
28. ^{{Cite journal|last=Bourassa|first=A.E.|last2=Degenstein|first2=D.A.|last3=Llewellyn|first3=E.J.|title=SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight|journal=Journal of Quantitative Spectroscopy and Radiative Transfer|volume=109|issue=1|pages=52–73|doi=10.1016/j.jqsrt.2007.07.007|bibcode=2008JQSRT.109...52B|year=2008}}
29. ^{{Cite journal|last=Zawada|first=D. J.|last2=Dueck|first2=S. R.|last3=Rieger|first3=L. A.|last4=Bourassa|first4=A. E.|last5=Lloyd|first5=N. D.|last6=Degenstein|first6=D. A.|date=2015-06-26|title=High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model|url=https://www.atmos-meas-tech.net/8/2609/2015/|journal=Atmos. Meas. Tech.|volume=8|issue=6|pages=2609–2623|doi=10.5194/amt-8-2609-2015|issn=1867-8548|bibcode=2015AMT.....8.2609Z}}
30. ^{{cite journal | doi = 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2 | last1 = Ricchiazzi | first1 = P. | last2 = Yang | first2 = S. | last3 = Gautier | first3 = C. | last4 = Sowle | first4 = D. | title = SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere | journal=Bull. Am. Meteorol. Soc. | bibcode=1998BAMS...79.2101R | year = 1998 | volume = 79 | issue = 10 | pages = 2101–2114 | ref = ricchiazzi1998}}
31. ^{{cite journal | doi = 10.1016/j.asr.2005.03.012 | last1 = Rozanov | first1 = A. | last2 = Rozanov | first2 = V. | last3 = Buchwitz | first3 = M. | last4 = Kokhanovsky | first4 = A. | last5 = Burrows | first5 = J. P. | title= SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region | journal = Advances in Space Research | volume = 36 | issue = 5 | pages = 1015–1019 |bibcode=2005AdSpR..36.1015R | year = 2005 | ref = rozanov2005}}
32. ^{{cite journal | doi = 10.1016/j.jqsrt.2013.07.004 | last1 = Rozanov | first1 = V. | last2 = Rozanov | first2 = A. | last3 = Kokhanovsky | first3 = A. | last4 = Burrows | first4 = J. P. | title= Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN | journal = Journal of Quantitative Spectroscopy and Radiative Transfer | volume = 133 | pages = 13–71 | year = 2014 | ref = rozanov2014|bibcode = 2014JQSRT.133...13R }}
33. ^{{cite journal | last1 = Lyapustin | first1 = A. | title = Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study | journal = Applied Optics | volume = 41 | issue = 27 | pages = 5607–5615 | year = 2002 |doi=10.1364/AO.41.005607 | ref = lyapustin2002| pmid=12269559|bibcode = 2002ApOpt..41.5607L }}
34. ^{{cite journal | doi = 10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2 | last1 = Evans | first1 = K. F. | title = The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer | journal = Journal of the Atmospheric Sciences | volume = 55 | pages = 429–446 | year = 1998 | ref = evans2006|bibcode = 1998JAtS...55..429E | issue = 3 | citeseerx = 10.1.1.555.9038 }}
35. ^{{cite journal | doi = 10.1016/j.jqsrt.2018.10.017 | last1 = Ramon | first1 = D. | title = Modeling polarized radiative transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code | journal = Journal of Quantitative Spectroscopy and Radiative Transfer | volume = 222-223 | pages = 89 - 107 | year = 2019 }}
36. ^FluxNet
37. ^{{Cite journal | doi = 10.1016/S0098-3004(97)00130-1 | last1 = Key | first1 = J. | last2 = Schweiger | first2 = A. J. | year = 1998 | title = Tools for atmospheric radiative transfer: Streamer and FluxNet | journal = Computers & Geosciences | volume = 24 | issue = 5 |bibcode=1998CG.....24..443K | pages = 443–451}}
38. ^HITRAN Site
39. ^GEISA Site
General
  • Bohren, Craig F. and Eugene E. Clothiaux, Fundamentals of atmospheric radiation: an introduction with 400 problems, Weinheim : Wiley-VCH, 2006, 472 p., {{ISBN|3-527-40503-8}}.
  • Goody, R. M. and Y. L. Yung, Atmospheric Radiation: Theoretical Basis. Oxford University Press, 1996 (Second Edition), 534 pages, {{ISBN|978-0-19-510291-8}}.
  • Liou, Kuo-Nan, An introduction to atmospheric radiation, Amsterdam ; Boston : Academic Press, 2002, 583 p., International geophysics series, v.84, {{ISBN|0-12-451451-0}}.
  • Mobley, Curtis D., Light and water: radiative transfer in natural waters; based in part on collaborations with Rudolph W. Preisendorfer, San Diego, Academic Press, 1994, 592 p., {{ISBN|0-12-502750-8}}
  • Petty, Grant W, A first course in atmospheric radiation (2nd Ed.), Madison, Wisconsin : Sundog Pub., 2006, 472 p., {{ISBN|0-9729033-1-3}}
  • Preisendorfer, Rudolph W., Hydrologic optics, Honolulu, Hawaii : U.S. Dept. of Commerce, National Oceanic & Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, 1976, 6 volumes.
  • Stephens, Graeme L., Remote sensing of the lower atmosphere : an introduction, New York, Oxford University Press, 1994, 523 p. {{ISBN|0-19-508188-9}}.
  • Thomas, Gary E. and Knut Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge, New York, Cambridge University Press, 1999, 517 p., {{ISBN|0-521-40124-0}}.
  • Zdunkowski, W., T. Trautmann, A. Bott, Radiation in the Atmosphere. Cambridge University Press, 2007, 496 pages, {{ISBN|978-0-521-87107-5}}

External links

  • ITWC for radiative transfer
{{DEFAULTSORT:Atmospheric Radiative Transfer Codes}}

3 : Science-related lists|Atmospheric radiative transfer codes|Satellite meteorology and remote sensing

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 0:14:20