请输入您要查询的百科知识:

 

词条 Aurora A kinase
释义

  1. Discovery

  2. Aurora kinase family

  3. Localization

  4. Mitosis

  5. Meiosis

  6. Protein translation

  7. Clinical significance

  8. Interactions

  9. References

  10. Further reading

  11. External links

{{Infobox_gene}}Aurora kinase A also known as serine/threonine-protein kinase 6 is an enzyme that in humans is encoded by the AURKA gene.[1][2]

Aurora A is a member of a family of mitotic serine/threonine kinases. It is implicated with important processes during mitosis and meiosis whose proper function is integral for healthy cell proliferation. Aurora A is activated by one or more phosphorylations[3] and its activity peaks during the G2 phase to M phase transition in the cell cycle.[4]

Discovery

The aurora kinases were first identified in 1990 during a cDNA screen of Xenopus eggs.[3] The kinase discovered, Eg2, is now referred to as Aurora A.[5] It was not until 1998, however, that Aurora A's meiotic and mitotic importance was realized.[3]

Aurora kinase family

The human genome contains three members the Aurora kinase family: Aurora A kinase, Aurora B kinase and Aurora C kinase. The Xenopus, Drosophila, and Caenorhabditis elegans genomes, on the other hand, contain orthologues only to Aurora A and Aurora B.[3]

In all studied species, the three Aurora mitotic kinases localize to the centrosome[5] during different phases of mitosis.[3] The family members have highly conserved C-terminal catalytic domains. Their N-terminal domains, however, exhibit a large degree of variance in the size and sequence.[5]

Aurora A and Aurora B kinases play important roles in mitosis. The Aurora A kinase is associated with centrosome maturation and separation and thereby regulates spindle assembly and stability. The Aurora B kinase is a chromosome passenger protein and regulates chromosome segregation and cytokinesis.

Although there is evidence to suggest that Aurora C might be a chromosomal passenger protein, the cellular function of it is less clear.

Localization

Aurora A localizes next to the centrosome late in the G1 phase and early in the S phase. As the cell cycle progresses, concentrations of Aurora A increase and the kinase associates with the mitotic poles and the adjacent spindle microtubules. Aurora A remains associated with the spindles through telophase.[3] Right before mitotic exit, Aurora A relocalizes to the mid-zone of the spindle.[6]

Mitosis

During mitosis, a mitotic spindle is assembled by using microtubules to tether together the mother centrosome to its daughter. The resulting mitotic spindle is then used to propel apart the sister chromosomes into what will become the two new daughter cells. Aurora A is critical for proper formation of mitotic spindle. It is required for the recruitment of several different proteins important to the spindle formation. Among these target proteins are TACC, a microtubule-associated protein that stabilizes centrosomal microtubules and Kinesin 5, a motor protein involved in the formation of the bipolar mitotic spindle.[3] γ-tubulins, the base structure from which centrosomal microtubules polymerize, are also recruited by Aurora A. Without Aurora A the centrosome does not accumulate the quantity of γ-tubulin that normal centrosomes recruit prior to entering anaphase. Though the cell cycle continues even in the absence of deficient γ-tubulin, the centrosome never fully matures; it organizes fewer aster microtubules than normal.[4]

Furthermore, Aurora A is necessary for the proper separation of the centrosomes after the mitotic spindle has been formed. Without Aurora A, the mitotic spindle, depending on the organism, will either never separate or will begin to separate only to collapse back onto itself.[4] In the case of the former, it has been suggested that Aurora A cooperates with the kinase Nek2 in Xenopus to dissolve the structure tethering the cell's centrosomes together. Therefore, without proper expression of Aurora A, the cell's centrosomes are never able to separate.[6]

Aurora A also assures proper organization and alignment of the chromosomes during prometaphase. It is directly involved in the interaction of the kinetochore, the part of the chromosome at which the mitotic spindle attaches and pulls, and the mitotic spindle's extended microtubules. It is speculated that Aurora B cooperates with Aurora A to complete this task. In the absence of Aurora A mad2, a protein that normally dissipates once a proper kinetochore-microtubule connection is made, remains present even into metaphase.[6]

Finally, Aurora A helps orchestrate an exit from mitosis by contributing to the completion of cytokinesis- the process by which the cytoplasm of the parent cell is split into two daughter cells. During citokinesis the mother centriole returns to the mid-body of the mitotic cell at the end of mitosis and causes the central microtubules to release from the mid-body. The release allows mitosis to run to completion. Though the exact mechanism by which Aurora A aids cytokinesis is unknown, it is well documented that it relocalizes to the mid-body immediately before the completion of mitosis.[6]

Intriguingly, abolishment of Aurora A through RNAi interference results in different mutant phenotypes in different organisms and cell types.[6] For example, deletion of Aurora A in C. elegans results in an initial separation of the cell's centrosomes followed by an immediate collapse of the asters. In Xenopus, deletion disallows the mitotic spindle from ever even forming.[4] And in Drosophila, flies without Aurora A will effectively form spindles and separate but the asteral microtubules will be dwarfed. These observations suggests that while Aurora-A has orthologues in many different organisms, it may play a similar but slightly different role in each.[6]

Meiosis

Aurora A phosphorylation directs the cytoplasmic polyadenylation translation of mRNA's, like the MAP kinase kinase kinase protein MOS, that are vital to the completion of meiosis in Xenopus Oocytes.[5] Prior to the first meiotic metaphase, Aurora A induces the synthesis of MOS. The MOS protein accumulates until it exceeds a threshold and then transduces the phosphorylation cascade in the map kinase pathway. This signal subsequently activates the kinase RSK which in turn binds to the protein Myt1. Myt1, in complex with RSK, is now unable to inhibit cdc2. As a consequence, cdc2 permits entry into meiosis.[3] A similar Aurora A dependent process regulates the transition from meiosis I-meiosis II.

Furthermore, Aurora A has been observed to have a biphasic pattern of activation during progression through meiosis. It has been suggested that the fluctuations, or phases, of Aurora A activation are dependent on a positive-feedback mechanism with a p13SUC1-associated protein kinase[6]

Protein translation

Aurora A is not only implicated with the translation of MOS during meiosis but also in the polyadenylation and subsequent translation of neural mRNAs whose protein products are associated with synaptic plasticity.[6]

Clinical significance

Aurora A dysregulation has been associated with high occurrence of cancer. For example, one study showed over-expression of Aurora A in 94 percent of the invasive tissue growth in breast cancer, while surrounding, healthy tissues had normal levels of Aurora A expression.[3] Aurora A has also been shown to be involved in the Epithelial–mesenchymal transition and Neuroendocrine Transdifferentiation of Prostate Cancer cells in aggressive disease.[7]

Dysregulation of Aurora A may lead to cancer because Aurora A is required for the completion of cytokinesis. If the cell begins mitosis, duplicates its DNA, but is then not able to divide into two separate cells it becomes an aneuploid- containing more chromosomes than normal. Aneuploidy is a trait of many cancerous tumors.[6] Ordinarily, Aurora A expression levels are kept in check by the tumor suppressor protein p53.[3]

Mutations of the chromosome region that contains Aurora A, 20q13, are generally considered to have a poor prognosis.[3]

Osimertinib and rociletinib, two anti cancer drugs for lung cancer, work by shutting off mutant EGFR, which initially kills cancerous tumors, but the tumors rewire and activate Aurora kinase A, becoming cancerous growths again. According to a 2018 study, targeting both EGFR and Aurora prevents return of drug resistant tumors.[8]

Interactions

Aurora A kinase has been shown to interact with:

{{div col|colwidth=30em}}
  • BRCA1,[9]
  • MBD3,[10]
  • NME1,[11]
  • P53,[12]
  • TACC1,[13][14]
  • TPX2,[15] and
  • UBE2N.[16]
{{Div col end}}

References

1. ^{{cite journal | vauthors = Sen S, Zhou H, White RA | title = A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines | journal = Oncogene | volume = 14 | issue = 18 | pages = 2195–200 | date = May 1997 | pmid = 9174055 | doi = 10.1038/sj.onc.1201065 }}
2. ^{{cite journal | vauthors = Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S | title = Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation | journal = Nat. Genet. | volume = 20 | issue = 2 | pages = 189–93 | date = October 1998 | pmid = 9771714 | doi = 10.1038/2496 }}
3. ^10 {{cite journal | vauthors = Crane R, Gadea B, Littlepage L, Wu H, Ruderman JV | title = Aurora A, meiosis and mitosis | journal = Biol. Cell | volume = 96 | issue = 3 | pages = 215–29 | year = 2004 | pmid = 15182704 | doi = 10.1016/j.biolcel.2003.09.008 | url = http://cellbio.med.harvard.edu/faculty/ruderman/publications/Crane_Aur_A_Biol_Cell_2004.pdf }}
4. ^{{cite journal | vauthors = Hannak E, Kirkham M, Hyman AA, Oegema K | title = Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans | journal = J. Cell Biol. | volume = 155 | issue = 7 | pages = 1109–16 | date = December 2001 | pmid = 11748251 | pmc = 2199344 | doi = 10.1083/jcb.200108051 }}
5. ^{{cite journal | vauthors = Ma C, Cummings C, Liu XJ | title = Biphasic activation of Aurora-A kinase during the meiosis I- meiosis II transition in Xenopus oocytes | journal = Mol. Cell. Biol. | volume = 23 | issue = 5 | pages = 1703–16 | date = March 2003 | pmid = 12588989 | pmc = 151708 | doi = 10.1128/MCB.23.5.1703-1716.2003 }}
6. ^{{cite journal | vauthors = Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H | title = Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells | journal = J. Biol. Chem. | volume = 278 | issue = 51 | pages = 51786–95 | date = December 2003 | pmid = 14523000 | doi = 10.1074/jbc.M306275200 }}
7. ^{{cite journal | vauthors = Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED | title = Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention | journal = Front Oncol | volume = 4 | issue = | pages = 370 | year = 2014 | pmid = 25566507 | pmc = 4274903 | doi = 10.3389/fonc.2014.00370 }}
8. ^https://medicalxpress.com/news/2018-11-cancer-achilles-heel-drug-resistant-tumors.html
9. ^{{cite journal | vauthors = Ouchi M, Fujiuchi N, Sasai K, Katayama H, Minamishima YA, Ongusaha PP, Deng C, Sen S, Lee SW, Ouchi T | title = BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition | journal = J. Biol. Chem. | volume = 279 | issue = 19 | pages = 19643–8 | date = May 2004 | pmid = 14990569 | doi = 10.1074/jbc.M311780200 }}
10. ^{{cite journal | vauthors = Sakai H, Urano T, Ookata K, Kim MH, Hirai Y, Saito M, Nojima Y, Ishikawa F | title = MBD3 and HDAC1, two components of the NuRD complex, are localized at Aurora-A-positive centrosomes in M phase | journal = J. Biol. Chem. | volume = 277 | issue = 50 | pages = 48714–23 | date = December 2002 | pmid = 12354758 | doi = 10.1074/jbc.M208461200 }}
11. ^{{cite journal | vauthors = Du J, Hannon GJ | title = The centrosomal kinase Aurora-A/STK15 interacts with a putative tumor suppressor NM23-H1 | journal = Nucleic Acids Res. | volume = 30 | issue = 24 | pages = 5465–75 | date = December 2002 | pmid = 12490715 | pmc = 140054 | doi = 10.1093/nar/gkf678 }}
12. ^{{cite journal | vauthors = Chen SS, Chang PC, Cheng YW, Tang FM, Lin YS | title = Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function | journal = EMBO J. | volume = 21 | issue = 17 | pages = 4491–9 | date = September 2002 | pmid = 12198151 | pmc = 126178 | doi = 10.1093/emboj/cdf409 }}
13. ^{{cite journal | vauthors = Delaval B, Ferrand A, Conte N, Larroque C, Hernandez-Verdun D, Prigent C, Birnbaum D | title = Aurora B -TACC1 protein complex in cytokinesis | journal = Oncogene | volume = 23 | issue = 26 | pages = 4516–22 | date = June 2004 | pmid = 15064709 | doi = 10.1038/sj.onc.1207593 }}
14. ^{{cite journal | vauthors = Conte N, Delaval B, Ginestier C, Ferrand A, Isnardon D, Larroque C, Prigent C, Séraphin B, Jacquemier J, Birnbaum D | title = TACC1-chTOG-Aurora A protein complex in breast cancer | journal = Oncogene | volume = 22 | issue = 50 | pages = 8102–16 | date = November 2003 | pmid = 14603251 | doi = 10.1038/sj.onc.1206972 }}
15. ^{{cite journal | vauthors = Kufer TA, Silljé HH, Körner R, Gruss OJ, Meraldi P, Nigg EA | title = Human TPX2 is required for targeting Aurora-A kinase to the spindle | journal = J. Cell Biol. | volume = 158 | issue = 4 | pages = 617–23 | date = August 2002 | pmid = 12177045 | pmc = 2174010 | doi = 10.1083/jcb.200204155 }}
16. ^{{cite journal | vauthors = Ewart-Toland A, Briassouli P, de Koning JP, Mao JH, Yuan J, Chan F, MacCarthy-Morrogh L, Ponder BA, Nagase H, Burn J, Ball S, Almeida M, Linardopoulos S, Balmain A | title = Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human | journal = Nat. Genet. | volume = 34 | issue = 4 | pages = 403–12 | date = August 2003 | pmid = 12881723 | doi = 10.1038/ng1220 }}

Further reading

{{refbegin|35em}}
  • {{cite journal | vauthors = Ferchichi I, Stambouli N, Marrackchi R, Arlot Y, Prigent C, Fadiel A, Odunsi K, Ben Ammar Elgaaied A, Hamza A | title = Experimental and computational studies indicate specific binding of pVHL protein to Aurora-A kinase | journal = J Phys Chem B | volume = 114 | issue = 3 | pages = 1486–97 | date = January 2010 | pmid = 20047310 | doi = 10.1021/jp909869g }}
  • {{cite journal | vauthors = Nigg EA | title = Mitotic kinases as regulators of cell division and its checkpoints | journal = Nat. Rev. Mol. Cell Biol. | volume = 2 | issue = 1 | pages = 21–32 | year = 2001 | pmid = 11413462 | doi = 10.1038/35048096 }}
  • {{cite journal | vauthors = Kimura M, Kotani S, Hattori T, Sumi N, Yoshioka T, Todokoro K, Okano Y | title = Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1 | journal = J. Biol. Chem. | volume = 272 | issue = 21 | pages = 13766–71 | year = 1997 | pmid = 9153231 | doi = 10.1074/jbc.272.21.13766 }}
  • {{cite journal | vauthors = Shindo M, Nakano H, Kuroyanagi H, Shirasawa T, Mihara M, Gilbert DJ, Jenkins NA, Copeland NG, Yagita H, Okumura K | title = cDNA cloning, expression, subcellular localization, and chromosomal assignment of mammalian aurora homologues, aurora-related kinase (ARK) 1 and 2 | journal = Biochem. Biophys. Res. Commun. | volume = 244 | issue = 1 | pages = 285–92 | year = 1998 | pmid = 9514916 | doi = 10.1006/bbrc.1998.8250 }}
  • {{cite journal | vauthors = Kimura M, Matsuda Y, Eki T, Yoshioka T, Okumura K, Hanaoka F, Okano Y | title = Assignment of STK6 to human chromosome 20q13.2-->q13.3 and a pseudogene STK6P to 1q41-->q42 | journal = Cytogenet. Cell Genet. | volume = 79 | issue = 3–4 | pages = 201–3 | year = 1997 | pmid = 9605851 | doi = 10.1159/000134721 }}
  • {{cite journal | vauthors = Farruggio DC, Townsley FM, Ruderman JV | title = Cdc20 associates with the kinase aurora2/Aik | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 96 | issue = 13 | pages = 7306–11 | year = 1999 | pmid = 10377410 | pmc = 22081 | doi = 10.1073/pnas.96.13.7306 }}
  • {{cite journal | vauthors = Walter AO, Seghezzi W, Korver W, Sheung J, Lees E | title = The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation | journal = Oncogene | volume = 19 | issue = 42 | pages = 4906–16 | year = 2000 | pmid = 11039908 | doi = 10.1038/sj.onc.1203847 }}
  • {{cite journal | vauthors = Hartley JL, Temple GF, Brasch MA | title = DNA cloning using in vitro site-specific recombination | journal = Genome Res. | volume = 10 | issue = 11 | pages = 1788–95 | year = 2000 | pmid = 11076863 | pmc = 310948 | doi = 10.1101/gr.143000 }}
  • {{cite journal | vauthors = Simpson JC, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S | title = Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing | journal = EMBO Rep. | volume = 1 | issue = 3 | pages = 287–92 | year = 2000 | pmid = 11256614 | pmc = 1083732 | doi = 10.1093/embo-reports/kvd058 }}
  • {{cite journal | vauthors = Katayama H, Zhou H, Li Q, Tatsuka M, Sen S | title = Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle | journal = J. Biol. Chem. | volume = 276 | issue = 49 | pages = 46219–24 | year = 2001 | pmid = 11551964 | doi = 10.1074/jbc.M107540200 }}
  • {{cite journal | vauthors = Crosio C, Fimia GM, Loury R, Kimura M, Okano Y, Zhou H, Sen S, Allis CD, Sassone-Corsi P | title = Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases | journal = Mol. Cell. Biol. | volume = 22 | issue = 3 | pages = 874–85 | year = 2002 | pmid = 11784863 | pmc = 133550 | doi = 10.1128/MCB.22.3.874-885.2002 }}
  • {{cite journal | vauthors = Tanaka M, Ueda A, Kanamori H, Ideguchi H, Yang J, Kitajima S, Ishigatsubo Y | title = Cell-cycle-dependent regulation of human aurora A transcription is mediated by periodic repression of E4TF1 | journal = J. Biol. Chem. | volume = 277 | issue = 12 | pages = 10719–26 | year = 2002 | pmid = 11790771 | doi = 10.1074/jbc.M108252200 }}
  • {{cite journal | vauthors = Meraldi P, Honda R, Nigg EA | title = Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells | journal = EMBO J. | volume = 21 | issue = 4 | pages = 483–92 | year = 2002 | pmid = 11847097 | pmc = 125866 | doi = 10.1093/emboj/21.4.483 }}
  • {{cite journal | vauthors = Lauffart B, Howell SJ, Tasch JE, Cowell JK, Still IH | title = Interaction of the transforming acidic coiled-coil 1 (TACC1) protein with ch-TOG and GAS41/NuBI1 suggests multiple TACC1-containing protein complexes in human cells | journal = Biochem. J. | volume = 363 | issue = Pt 1 | pages = 195–200 | year = 2002 | pmid = 11903063 | pmc = 1222467 | doi = 10.1042/0264-6021:3630195 }}
  • {{cite journal | vauthors = Gigoux V, L'Hoste S, Raynaud F, Camonis J, Garbay C | title = Identification of Aurora kinases as RasGAP Src homology 3 domain-binding proteins | journal = J. Biol. Chem. | volume = 277 | issue = 26 | pages = 23742–6 | year = 2002 | pmid = 11976319 | doi = 10.1074/jbc.C200121200 }}
  • {{cite journal | vauthors = Kufer TA, Silljé HH, Körner R, Gruss OJ, Meraldi P, Nigg EA | title = Human TPX2 is required for targeting Aurora-A kinase to the spindle | journal = J. Cell Biol. | volume = 158 | issue = 4 | pages = 617–23 | year = 2002 | pmid = 12177045 | pmc = 2174010 | doi = 10.1083/jcb.200204155 }}
  • {{cite journal | vauthors = Chen SS, Chang PC, Cheng YW, Tang FM, Lin YS | title = Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function | journal = EMBO J. | volume = 21 | issue = 17 | pages = 4491–9 | year = 2002 | pmid = 12198151 | pmc = 126178 | doi = 10.1093/emboj/cdf409 }}
{{refend}}

External links

  • {{UCSC gene info|AURKA}}
{{PDB Gallery|geneid=6790}}{{Serine/threonine-specific protein kinases}}{{Enzymes}}{{Portal bar|Molecular and Cellular Biology|border=no}}

3 : Cell cycle|EC 2.7.11|Cancer research

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 11:22:42