请输入您要查询的百科知识:

 

词条 Brachypodium distachyon
释义

  1. Model organism

  2. Notes

  3. References

  4. External links

{{Speciesbox
|image = Brachypodium_distachyon_Bd21-3.jpg
|genus = Brachypodium
|species = distachyon
|authority = (L.) P.Beauv.
}}Brachypodium distachyon, commonly called purple false brome[1] or stiff brome,[2] is a grass species native to southern Europe, northern Africa and southwestern Asia east to India. It is related to the major cereal grain species wheat, barley, oats, maize, rice, rye, sorghum, and millet. It has many qualities that make it an excellent model organism for functional genomics research in temperate grasses, cereals, and dedicated biofuel crops such as switchgrass. These attributes include small genome (~270 Mbp) diploid accessions, a series of polyploid accessions, a small physical stature, self-fertility, a short lifecycle, simple growth requirements, and an efficient transformation system. The genome of Brachypodium distachyon (diploid inbred line Bd21) has been sequenced and published in Nature in 2010.[3]

Model organism

Although Brachypodium distachyon has little or no direct agricultural significance, it has several advantages as an experimental model organism for understanding the genetic, cellular and molecular biology of temperate grasses. The relatively small size of its genome makes it useful for genetic mapping and sequencing. In addition, only ~21% of the Brachypodium genome consists of repetitive elements, compared to 26% in rice and ~80% in wheat, further simplifying genetic mapping and sequencing.[3] At about 272 million base pairs and with five chromosomes, it has a small genome for a grass species. Brachypodium distachyons small size (15–20 cm) and rapid life cycle (eight to twelve weeks) are also advantageous for research purposes.[4] For early-flowering accessions it can take as little as three weeks from germination to flower (under an appropriate inductive photoperiod). The small size of some accessions makes it convenient for cultivation in a small space. As a weed it grows easily without specialized growing conditions.

This Brachypodium is emerging as a powerful model with a growing research community. The International Brachypodium Initiative (IBI) held its first genomics meeting and workshop at the PAG XIV conference in San Diego, California, in January 2006. The goal of the IBI is to promote the development of B. distachyon as a model system and will develop and distribute genomic, genetic, and bioinformatics resources such as reference genotypes, BAC libraries, genetic markers, mapping populations, and a genome sequence database. Recently, efficient Agrobacterium-mediated transformation systems have been developed for a range of Brachypodium genotypes,[5][6][7] enabling the development of T-DNA mutant collections.[6][8][9] The characterization and distribution of T-DNA insertion lines has been initiated to facilitate the understanding of gene function in grasses.[10]

By now, Brachypodium distachyon has established itself as an important tool for comparative genomics.[11] It is now emerging as a model for crop plant disease, facilitating the model-to-crop transfer of knowledge on disease resistance.[12] Brachypodium distachyon is also becoming a useful model system for studies of evolutionary developmental biology, in particular to contrast molecular genetic mechanisms with dicotyledon model systems, notably Arabidopsis thaliana.[13] The finding of higher genetic diversity in eastern Iberian populations occurring in basic soils suggests that these populations can be better adapted than those occurring in western areas of the Iberian Peninsula where the soils are more acidic and accumulate toxic Al ions.[14]

Notes

1. ^{{PLANTS|id=BRDI2|taxon=Brachypodium distachyon|accessdate=10 January 2016}}
2. ^{{cite web |title=BSBI List 2007 |publisher=Botanical Society of Britain and Ireland |url=http://www.bsbi.org.uk/BSBIList2007.xls |format=xls |archive-url=https://www.webcitation.org/6VqJ46atN?url=http://www.bsbi.org.uk/BSBIList2007.xls |archive-date=2015-01-25 |accessdate=2014-10-17 |deadurl=yes |df= }}
3. ^{{cite journal |author=The International Brachypodium Initiative |year=2010 |title=Genome sequencing and analysis of the model grass Brachypodium distachyon |journal=Nature |volume=463 |issue=7282 |pages=763–8 |pmid=20148030 |doi=10.1038/nature08747}}
4. ^{{cite journal |first1=Chuan |last1=Li |first2=Heidi |last2=Rudi |first3=Eric J. |last3=Stockinger |first4=Hongmei |last4=Cheng |first5=Moju |last5=Cao |first6=Samuel E. |last6=Fox |first7=Todd C. |last7=Mockler |first8=Bjørge |last8=Westereng |first9=Siri |last9=Fjellheim |first10=Odd Arne |last10=Rognli |first11=Simen R. |last11=Sandve |year=2012 |title=Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses |journal=BMC Plant Biol |volume=12 |issue=65 |pages=65 |pmid=22569006 |doi=10.1186/1471-2229-12-65 |pmc=3487962}}
5. ^{{cite journal |first1=John P. |last1=Vogel |first2=David F. |last2=Garvin |first3=Oymon M. |last3=Leong |first4=Daniel M. |last4=Hayden |title=Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon |journal=Plant Cell, Tissue and Organ Culture |year=2006 |volume=84 |issue=2 |pages=100179–91 |doi=10.1007/s11240-005-9023-9}}
6. ^{{cite journal |first1=Philippe |last1=Vain |first2=Barbara |last2=Worland |first3=Vera |last3=Thole |first4=Neil |last4=McKenzie |first5=Silvia C. |last5=Alves |first6=Magdalena |last6=Opanowicz |first7=Lesley J. |last7=Fish |first8=Michael W. |last8=Bevan |first9=John W. |last9=Snape |year=2008 |title=Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis |journal=Plant Biotechnology Journal |volume=6 |issue=5 |pages=236–45 |pmid=18004984 |doi=10.1111/j.1467-7652.2007.00308.x }}
7. ^{{cite journal |first1=Sílvia C |last1=Alves |first2=Barbara |last2=Worland |first3=Vera |last3=Thole |first4=John W |last4=Snape |first5=Michael W |last5=Bevan |first6=Philippe |last6=Vain |year=2009 |title=A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21 |journal=Nature Protocols |volume=4 |issue=5 |pages=638–49 |pmid=19360019 |doi=10.1038/nprot.2009.30}}
8. ^{{cite journal |first1=Vera |last1=Thole |first2=Sílvia C |last2=Alves |first3=Barbara |last3=Worland |first4=Michael W |last4=Bevan |first5=Philippe |last5=Vain |year=2009 |title=A protocol for efficiently retrieving and characterising Flanking Sequence Tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants |journal=Nature Protocols |volume=4 |issue=5 |pages=650–61 |pmid=19360020 |doi=10.1038/nprot.2009.32}}
9. ^{{cite journal |first1=Vera |last1=Thole |first2=Antoine |last2=Peraldi |first3=Barbara |last3=Worland |first4=Paul |last4=Nicholson |first5=John H. |last5=Doonan |first6=Philippe |last6=Vain |year=2012 |title=T-DNA mutagenesis in Brachypodium distachyon|journal= J Exp Bot |volume=63 |issue=2 |pages=567–76 |pmid=22090444 |doi=10.1093/jxb/err333}}
10. ^{{cite journal |first1=Vera |last1=Thole |first2=Barbara |last2=Worland |first3=Jonathan |last3=Wright |first4=Michael W. |last4=Bevan |first5=Philippe |last5=Vain |year=2010 |title=Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21 |journal=Plant Biotechnology Journal |volume=8 |issue=6 |pages=734–47 |pmid=20374523 |doi=10.1111/j.1467-7652.2010.00518.x}}
11. ^{{cite journal |first1=Naxin |last1=Huo |first2=John P. |last2=Vogel |first3=Gerard R. |last3=Lazo |first4=Frank M. |last4=You |first5=Yaqin |last5=Ma |first6=Stephanie |last6=McMahon |first7=Jan |last7=Dvorak |first8=Olin D. |last8=Anderson |first9=Ming-Cheng |last9=Luo |first10=Yong Q. |last10=Gu |year=2009 |title=Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat |journal=Plant Mol Biol |volume=70 |issue=1–2 |pages=47–61 |pmid=19184460 |doi=10.1007/s11103-009-9456-3}}
12. ^{{cite journal |first1=Rachel |last1=Goddard |first2=Antoine |last2=Peraldi |first3=Chris |last3=Ridout |first4=Paul |last4=Nicholson |year=2014 |title=Enhanced Disease Resistance Caused by BRI1 Mutation Is Conserved Between Brachypodium distachyon and Barley (Hordeum Vulgare) |journal=Mol Plant Microbe Interact |volume=27 |issue=10 |pages=1095–1106 |pmid=24964059 |doi=10.1094/MPMI-03-14-0069-R}}
13. ^{{cite journal |first1=David |last1=Pacheco-Villalobos |first2=Martial |last2=Sankar |first3=Karin |last3=Ljung |first4=Christian S. |last4=Hardtke |year=2013 |title=Disturbed Local Auxin Homeostasis Enhances Cellular Anisotropy and Reveals Alternative Wiring of Auxin-ethylene Crosstalk in Brachypodium distachyon Seminal Roots |journal=PLoS Genetics |volume=9 |issue=6 |pages=e1003564 |doi=10.1371/journal.pgen.1003564|pmid=23840182 |pmc=3688705}}
14. ^{{Cite journal|last=Marques|first=Isabel|last2=Shiposha|first2=Valeriia|last3=López-Alvarez|first3=Diana|last4=Manzaneda|first4=Antonio J.|last5=Hernandez|first5=Pilar|last6=Olonova|first6=Marina|last7=Catalán|first7=Pilar|date=2017-06-15|title=Environmental isolation explains Iberian genetic diversity in the highly homozygous model grass Brachypodium distachyon|journal=BMC Evolutionary Biology|volume=17|issue=1|pages=139|doi=10.1186/s12862-017-0996-x|issn=1471-2148|pmc=5472904|pmid=28619047}}

References

{{More footnotes|date=April 2009}}
  • {{cite journal |doi=10.1016/j.plantsci.2006.01.012 |title=Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant |year=2006 |last1=Olsen |first1=P. |last2=Lenk |first2=I. |last3=Jensen |first3=C.S. |last4=Petersen |first4=K. |last5=Andersen |first5=C.H. |last6=Didion |first6=T. |last7=Nielsen |first7=K.K. |journal=Plant Science |volume=170 |issue=5 |pages=1020–5}}
  • {{cite journal |doi=10.1534/genetics.105.049726 |title=Alignment of the Genomes of Brachypodium distachyon and Temperate Cereals and Grasses Using Bacterial Artificial Chromosome Landing with Fluorescence in Situ Hybridization |year=2006 |last1=Hasterok |first1=R. |journal=Genetics |volume=173 |pages=349–62 |pmid=16489232 |last2=Marasek |first2=A |last3=Donnison |first3=IS |last4=Armstead |first4=I |last5=Thomas |first5=A |last6=King |first6=IP |last7=Wolny |first7=E |last8=Idziak |first8=D |last9=Draper |first9=J |last10=Jenkins |first10=G |issue=1 |pmc=1461447|display-authors=8 }}
  • {{cite journal |doi=10.1007/s00299-004-0889-5 |title=A rapid and efficient transformation protocol for the grass Brachypodium distachyon |year=2004 |last1=Christiansen |first1=Pernille |last2=Andersen |first2=Claus Henrik |last3=Didion |first3=Thomas |last4=Folling |first4=Marianne |last5=Nielsen |first5=Klaus Kristian |journal=Plant Cell Reports |volume=23 |issue=10–11 |pages=751–8 |pmid=15503032}}
  • {{cite web |last1=Engvild |first1=Kjeld C. |url=http://orbit.dtu.dk/fedora/objects/orbit:88303/datastreams/file_7710986/content |title=Mutagenesis of the Model Grass Brachypodium distachyon with Sodium Azide |publisher=Risø National Laboratory |date=March 2005}}
  • {{cite journal |doi=10.1023/B:CHRO.0000034130.35983.99 |title=Laying the Cytotaxonomic Foundations of a New Model Grass, Brachypodium distachyon (L.) Beauv |year=2004 |last1=Hasterok |first1=Robert |last2=Draper |first2=John |last3=Jenkins |first3=Glyn |journal=Chromosome Research |volume=12 |issue=4 |pages=397–403 |pmid=15241018}}
  • {{cite journal |doi=10.1111/j.1364-3703.2004.00224.x |title=Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa) |year=2004 |last1=Routledge |first1=Andrew P. M. |last2=Shelley |first2=Greg |last3=Smith |first3=Joel V. |last4=Talbot |first4=Nicholas J. |last5=Draper |first5=John |last6=Mur |first6=Luis A. J. |journal=Molecular Plant Pathology |volume=5 |issue=4 |pages=253–65 |pmid=20565594}}
  • {{cite journal |doi=10.1111/j.1364-3703.2004.00225.x |title=Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses |year=2004 |last1=Mur |first1=Luis A. J. |last2=Xu |first2=Renlin |last3=Casson |first3=Stuart A. |last4=Stoddart |first4=Wendy M. |last5=Routledge |first5=Andrew P. M. |last6=Draper |first6=John |journal=Molecular Plant Pathology |volume=5 |issue=4 |pages=267–80 |pmid=20565595}}
  • {{cite journal |doi=10.1104/pp.010196 |title=Brachypodium distachyon. A New Model System for Functional Genomics in Grasses |year=2001 |last1=Draper |first1=J. |last2=Mur |first2=L. A.J. |last3=Jenkins |first3=G. |last4=Ghosh-Biswas |first4=G. C. |last5=Bablak |first5=P. |last6=Hasterok |first6=R. |last7=Routledge |first7=A. P.M. |journal=Plant Physiology |volume=127 |issue=4 |pages=1539–55 |pmid=11743099 |pmc=133562}}
  • {{cite journal |doi=10.1007/BF00985367 |title=Phylogenetic reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplastndhF gene and nuclear ITS |year=2000 |last1=Catalán |first1=Pilar |last2=Olmstead |first2=Richard G. |journal=Plant Systematics and Evolution |volume=220 |issue=1–2 |pages=1–19}}
  • {{cite journal |doi=10.1111/j.1095-8339.1995.tb02590.x |title=Molecular phylogeny of the grass genus Brachypodium P. Beauv. Based on RFLP and RAPD analysis |year=1995 |last1=Catalán |first1=Pilar |last2=Shi |first2=Ying |last3=Armstrong |first3=Laurel |last4=Draper |first4=John |last5=Stace |first5=Clive A. |authorlink5 = Clive A. Stace |journal=Botanical Journal of the Linnean Society |volume=117 |issue=4 |pages=263–80}}
  • {{cite journal |doi=10.1007/BF00037687 |title=Plant regeneration and micropropagation of Brachypodium distachyon |year=1995 |last1=Bablak |first1=P. |last2=Draper |first2=J. |last3=Davey |first3=M. R. |last4=Lynch |first4=P. T. |journal=Plant Cell, Tissue and Organ Culture |volume=42 |issue=1 |pages=97–107}}
  • {{cite journal |pmid=8181731 |year=1994 |last1=Hsiao |first1=C |last2=Chatterton |first2=NJ |last3=Asay |first3=KH |last4=Jensen |first4=KB |title=Phylogenetic relationships of 10 grass species: An assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots |volume=37 |issue=1 |pages=112–20 |journal=Genome |doi=10.1139/g94-014}}
  • {{cite journal |doi=10.1007/BF00937726 |title=Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae) |year=1994 |last1=Shi |first1=Ying |last2=Draper |first2=John |last3=Stace |first3=Clive |authorlink3 = Clive Stace |journal=Plant Systematics and Evolution |volume=188 |issue=3–4 |pages=125–38}}

External links

{{Commons category|Brachypodium distachyon}}
  • www.brachypodium.org - The Brachypodium distachyon Information Resource.
  • www.brachybase.org - The Brachypodium distachyon Genome Browser and Annotation Database.
  • {{GRIN}}
{{Taxonbar|from=Q2352209}}

6 : Brachypodium|Grasses of Africa|Grasses of Asia|Grasses of Europe|Plant models|Taxa named by Palisot de Beauvois

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 15:48:58