请输入您要查询的百科知识:

 

词条 Carathéodory–Jacobi–Lie theorem
释义

  1. Statement

  2. Applications

  3. References

The Carathéodory–Jacobi–Lie theorem is a theorem in symplectic geometry which generalizes Darboux's theorem.

Statement

Let M be a 2n-dimensional symplectic manifold with symplectic form ω. For p ∈ M and r ≤ n, let f1, f2, ..., fr be smooth functions defined on an open neighborhood V of p whose differentials are linearly independent at each point, or equivalently

where {fi, fj} = 0. (In other words, they are pairwise in involution.) Here {–,–} is the Poisson bracket. Then there are functions fr+1, ..., fn, g1, g2, ..., gn defined on an open neighborhood U ⊂ V of p such that (fi, gi) is a symplectic chart of M, i.e., ω is expressed on U as

Applications

As a direct application we have the following. Given a Hamiltonian system as where M is a symplectic manifold with symplectic form and H is the Hamiltonian function, around every point where there is a symplectic chart such that one of its coordinates is H.

References

  • Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) {{ISBN|0-387-95495-3}}. Graduate-level textbook on smooth manifolds.
{{DEFAULTSORT:Caratheodory-Jacobi-Lie theorem}}{{differential-geometry-stub}}

2 : Symplectic geometry|Theorems in differential geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 13:39:43