请输入您要查询的百科知识:

 

词条 Carbonylation
释义

  1. Organic chemistry

     Hydroformylation  Decarbonylation  Reppe chemistry  Oxidative carbonylation  Other reactions 

  2. Carbonylation in inorganic chemistry

  3. Protein carbonylation

  4. References

Carbonylation refers to reactions that introduce carbon monoxide into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Organic chemistry

Several industrially useful organic chemicals are prepared by carbonylations, which can be highly selective reactions. Carbonylations produce organic carbonyls, i.e., compounds that contain the C=O functional group such as aldehydes, carboxylic acids, and esters.[1][1] Carbonylations are the basis of two main types of reactions, hydroformylation and Reppe Chemistry.

Hydroformylation

Hydroformylation entails the addition of both carbon monoxide and hydrogen to unsaturated organic compounds, usually alkenes. The usual products are aldehydes:

RCH=CH2 + H2 + CO → RCH2CH2CHO

The reaction requires metal catalysts that bind the CO, the H2, and the alkene, allowing these substrates to combine within its coordination sphere.

Decarbonylation

Many organic carbonyls undergo decarbonylation. A common transformation involves the conversion of aldehydes to alkanes, usually catalyzed by metal complexes:[2]

RCHO → RH + CO

Reppe chemistry

Reppe Chemistry, named after Walter Reppe, entails addition of carbon monoxide and an acidic hydrogen donor to the organic substrate. Large-scale applications of this type of carbonylation are the Monsanto and Cativa processes, which convert methanol to acetic acid. Acetic anhydride is prepared by a related carbonylation of methyl acetate.[3] In the related hydrocarboxylation and hydroesterification, alkenes and alkynes are the substrates. This method is used in industry to produce propionic acid from ethylene:

RCH=CH2 + H2O + CO → RCH2CH2CO2H

These reactions require metal catalysts, which bind and activate the CO.[4] In the industrial synthesis of ibuprofen, a benzylic alcohol is converted to the corresponding carboxylic acid via a Pd-catalyzed carbonylation:[1]

ArCH(CH3)OH + CO → ArCH(CH3)CO2H

Acrylic acid was once mainly prepared by the hydrocarboxylation of acetylene (modern technology relies on the oxidation of propene). The hydrocarboxylation of alkenes is a prominent example of Reppe chemistry. In industry, propanoic acid is mainly produced by the hydrocarboxylation of ethylene using nickel carbonyl as the catalyst:[5]

H2C=CH2 + H2O + CO → CH3CH2CO2H

Hydroesterification is like hydrocarboxylation, but uses alcohols instead of water.[6] This reaction is employed for the production of methyl propionate:

C2H4 + CO + MeOH → MeO2CCH2CH3

Oxidative carbonylation

Dimethyl carbonate and dimethyl oxalate are produced industrially using carbon monoxide and an oxidant as a source of CO2+.[5]

2 CH3OH + 1/2 O2 + CO → (CH3O)2CO + H2O

The oxidative carbonylation of methanol is catalyzed by copper(I) salts, which form transient carbonyl complexes. For the oxidative carbonylation of alkenes, palladium complexes are used.

Other reactions

The Koch reaction is a special case of hydrocarboxylation reaction that does not rely on metal catalysts. Instead, the process is catalyzed by strong acids such as sulfuric acid or the combination of phosphoric acid and boron trifluoride. The reaction is less applicable to simple alkene. The industrial synthesis of glycolic acid is achieved in this way:[7]

CH2O + CO + H2O → HOCH2CO2H

The conversion of isobutene to pivalic acid is also illustrative:

(CH3)2C=CH2 + H2O + CO → (CH3)3CCO2H

Alkyl, benzyl, vinyl, aryl, and allyl halides can also be carbonylated in the presence carbon monoxide and suitable catalysts such as manganese, iron, or nickel powders.[8]

Carbonylation in inorganic chemistry

{{main|metal carbonyl}}

Metal carbonyls, compounds with the formula M(CO)xLy (M = metal; L = other ligands) are prepared by carbonylation of transition metals. Iron and nickel powder react directly with CO to give Fe(CO)5 and Ni(CO)4, respectively. Most other metals form carbonyls less directly, such as from their oxides or halides. Metal carbonyls are widely employed as catalysts in the hydroformylation and Reppe processes discussed above.[9] Inorganic compounds that contain CO ligands can also undergo decarbonylation, often via a photochemical reaction.

Protein carbonylation

The modification of side chains in a few native amino acids such as histidine, cysteine, and lysine in proteins to carbonyl derivatives (aldehydes and ketones) is known as protein carbonylation.[10] Oxidative stress, often metal catalyzed, leads to protein carbonylation.

References

1. ^Arpe, .J.: Industrielle organische Chemie: Bedeutende vor- und Zwischenprodukte, 2007, Wiley-VCH-Verlag, {{ISBN|3-527-31540-3}}
2. ^Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010.
3. ^{{cite journal |author1=Zoeller, J. R. |author2=Agreda, V. H. |author3=Cook, S. L. |author4=Lafferty, N. L. |author5=Polichnowski, S. W. |author6=Pond, D. M. | title = Eastman Chemical Company Acetic Anhydride Process | journal = Catalysis Today | year = 1992 | volume = 13 | pages = 73–91 | doi = 10.1016/0920-5861(92)80188-S}}
4. ^{{cite journal|doi=10.1016/1381-1169(95)00130-1|last=Beller|first=Matthias|author2=Cornils, B. |author3=Frohning, C. D. |author4= Kohlpaintner, C. W. |year=1995|title=Progress in hydroformylation and carbonylation|journal=Journal of Molecular Catalysis A|volume=104|pages=17–85}}
5. ^{{ Ullmann | author = W. Bertleff |author2=M. Roeper |author3=X. Sava | title = Carbonylation | doi = 10.1002/14356007.a05_217 }}
6. ^El Ali, B.; Alper, H. "Hydrocarboxylation and hydroesterification reactions catalyzed by transition metal complexes" In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH:Weinheim, 2004. {{ISBN|978-3-527-30613-8}}
7. ^Karlheinz Miltenberger, "Hydroxycarboxylic Acids, Aliphatic" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2003.
8. ^{{cite book|author1=Riemenschneider, Wilhelm |author2=Bolt, Hermann|title=Esters, Organic|journal=Ullmann's Encyclopedia of Industrial Chemistry|year=2000|page=10|doi=10.1002/14356007.a09_565|isbn=978-3527306732}}
9. ^Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. {{ISBN|978-3-527-29390-2}}
10. ^{{Cite journal|doi=10.1111/j.1582-4934.2006.tb00407.x|title=Protein carbonylation, cellular dysfunction, and disease progression|year=2006|last1=Dalle-Donne|first1=Isabella|last2=Aldini|first2=Giancarlo|last3=Carini|first3=Marina|last4=Colombo|first4=Roberto|last5=Rossi|first5=Ranieri|last6=Milzani|first6=Aldo|journal=Journal of Cellular and Molecular Medicine|volume=10|issue=2|pages=389–406|pmid=16796807|pmc=3933129}} {{Cite journal|doi=10.1074/jbc.R700019200|title=Oxidative Stress and Covalent Modification of Protein with Bioactive Aldehydes|year=2008|last1=Grimsrud|first1=P. A.|last2=Xie|first2=H.|last3=Griffin|first3=T. J.|last4=Bernlohr|first4=D. A.|journal=Journal of Biological Chemistry|volume=283|issue=32|pages=21837–41|pmid=18445586|pmc=2494933}}

2 : Chemical reactions|Carbon monoxide

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 4:20:31