请输入您要查询的百科知识:

 

词条 Cauchy formula for repeated integration
释义

  1. Scalar case

  2. Applications

  3. References

  4. External links

The Cauchy formula for repeated integration, named after Augustin Louis Cauchy, allows one to compress n antidifferentiations of a function into a single integral (cf. Cauchy's formula).

Scalar case

Let ƒ be a continuous function on the real line. Then the nth repeated integral of ƒ based at a,

,

is given by single integration

.

A proof is given by induction. Since ƒ is continuous, the base case follows from the Fundamental theorem of calculus:

;

where

.

Now, suppose this is true for n, and let us prove it for n+1. Firstly, using the Leibniz integral rule, note that

.

Then, applying the induction hypothesis,

This completes the proof.

Applications

In fractional calculus, this formula can be used to construct a notion of differintegral, allowing one to differentiate or integrate a fractional number of times. Integrating a fractional number of times with this formula is straightforward; one can use fractional n by interpreting (n-1)! as Γ(n) (see Gamma function). Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.

References

  • Gerald B. Folland, Advanced Calculus, p. 193, Prentice Hall (2002). {{ISBN|0-13-065265-2}}

External links

  • {{cite web|author=Alan Beardon|url=http://nrich.maths.org/public/viewer.php?obj_id=1369|title=Fractional calculus II|publisher=University of Cambridge|year=2000}}

2 : Integral calculus|Theorems in analysis

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 22:06:17