请输入您要查询的百科知识:

 

词条 Comparability graph
释义

  1. Definitions and characterization

  2. Relation to other graph families

  3. Algorithms

  4. Notes

  5. References

In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, and containment graphs.[1]

An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order.

Definitions and characterization

For any strict partially ordered set (S,<), the comparability graph of (S, <) is the graph (S, ⊥) of which the vertices are the elements of S and the edges are those pairs {u, v} of elements such that u < v. That is, for a partially ordered set, take the directed acyclic graph, apply transitive closure, and remove orientation.

Equivalently, a comparability graph is a graph that has a transitive orientation,[2] an assignment of directions to the edges of the graph (i.e. an orientation of the graph) such that the adjacency relation of the resulting directed graph is transitive: whenever there exist directed edges (x,y) and (y,z), there must exist an edge (x,z).

One can represent any partial order as a family of sets, such that x < y in the partial order whenever the set corresponding to x is a subset of the set corresponding to y. In this way, comparability graphs can be shown to be equivalent to containment graphs of set families; that is, a graph with a vertex for each set in the family and an edge between two sets whenever one is a subset of the other.[3]

Alternatively,[4] a comparability graph is a graph such that, for every generalized cycle of odd length, one can find an edge (x,y) connecting two vertices that are at distance two in the cycle. Such an edge is called a triangular chord. In this context, a generalized cycle is defined to be a closed walk that uses each edge of the graph at most once in each direction.

Comparability graphs can also be characterized by a list of forbidden induced subgraphs.[5]

Relation to other graph families

Every complete graph is a comparability graph, the comparability graph of a total order. All acyclic orientations of a complete graph are transitive. Every bipartite graph is also a comparability graph. Orienting the edges of a bipartite graph from one side of the bipartition to the other results in a transitive orientation, corresponding to a partial order of height two. As {{harvtxt|Seymour|2006}} observes, every comparability graph that is neither complete nor bipartite has a skew partition.

The complement of any interval graph is a comparability graph. The comparability relation is called an interval order. Interval graphs are exactly the graphs that are chordal and that have comparability graph complements.[6]

A permutation graph is a containment graph on a set of intervals.[7] Therefore, permutation graphs are another subclass of comparability graphs.

The trivially perfect graphs are the comparability graphs of rooted trees.[8]

Cographs can be characterized as the comparability graphs of series-parallel partial orders; thus, cographs are also comparability graphs.[9]

Threshold graphs are another special kind of comparability graph.

Every comparability graph is perfect. The perfection of comparability graphs is Mirsky's theorem, and the perfection of their complements is Dilworth's theorem; these facts, together with the perfect graph theorem can be used to prove Dilworth's theorem from Mirsky's theorem or vice versa.[10] More specifically, comparability graphs are perfectly orderable graphs, a subclass of perfect graphs: a greedy coloring algorithm for a topological ordering of a transitive orientation of the graph will optimally color them.[11]

The complement of every comparability graph is a string graph.[12]

Algorithms

A transitive orientation of a graph, if it exists, can be found in linear time.[13] However, the algorithm for doing so will assign orientations to the edges of any graph, so to complete the task of testing whether a graph is a comparability graph, one must test whether the resulting orientation is transitive, a problem provably equivalent in complexity to matrix multiplication.

Because comparability graphs are perfect, many problems that are hard on more general classes of graphs, including graph coloring and the independent set problem, can be computed in polynomial time for comparability graphs.

Notes

1. ^{{harvtxt|Golumbic|1980}}, p. 105; {{harvtxt|Brandstädt|Le|Spinrad|1999}}, p. 94.
2. ^{{harvtxt|Ghouila-Houri|1962}}; see {{harvtxt|Brandstädt|Le|Spinrad|1999}}, theorem 1.4.1, p. 12. Although the orientations coming from partial orders are acyclic, it is not necessary to include acyclicity as a condition of this characterization.
3. ^{{harvtxt|Urrutia|1989}}; {{harvtxt|Trotter|1992}}; {{harvtxt|Brandstädt|Le|Spinrad|1999}}, section 6.3, pp. 94–96.
4. ^{{harvtxt|Ghouila-Houri|1962}} and {{harvtxt|Gilmore|Hoffman|1964}}. See also {{harvtxt|Brandstädt|Le|Spinrad|1999}}, theorem 6.1.1, p. 91.
5. ^{{harvtxt|Gallai|1967}}; {{harvtxt|Trotter|1992}}; {{harvtxt|Brandstädt|Le|Spinrad|1999}}, p. 91 and p. 112.
6. ^Transitive orientability of interval graph complements was proven by {{harvtxt|Ghouila-Houri|1962}}; the characterization of interval graphs is due to {{harvtxt|Gilmore|Hoffman|1964}}. See also {{harvtxt|Golumbic|1980}}, prop. 1.3, pp. 15–16.
7. ^{{harvtxt|Dushnik|Miller|1941}}. {{harvtxt|Brandstädt|Le|Spinrad|1999}}, theorem 6.3.1, p. 95.
8. ^{{harvtxt|Brandstädt|Le|Spinrad|1999}}, theorem 6.6.1, p. 99.
9. ^{{harvtxt|Brandstädt|Le|Spinrad|1999}}, corollary 6.4.1, p. 96; {{harvtxt|Jung|1978}}.
10. ^{{harvtxt|Golumbic|1980}}, theorems 5.34 and 5.35, p. 133.
11. ^{{harvtxt|Maffray|2003}}.
12. ^{{harvtxt|Golumbic|Rotem|Urrutia|1983}} and {{harvtxt|Lovász|1983}}. See also {{harvtxt|Fox|Pach|2012}}.
13. ^{{harvtxt|McConnell|Spinrad|1997}}; see {{harvtxt|Brandstädt|Le|Spinrad|1999}}, p. 91.

References

{{refbegin|2}}
  • {{citation

| last1 = Brandstädt | first1 = Andreas | author1-link = Andreas Brandstädt
| last2 = Le | first2 = Van Bang | last3 = Spinrad | first3 = Jeremy
| title = Graph Classes: A Survey
| publisher = SIAM Monographs on Discrete Mathematics and Applications
| year = 1999
| isbn = 0-89871-432-X}}.
  • {{citation

| last1 = Dushnik | first1 = Ben | last2 = Miller | first2 = E. W.
| title = Partially ordered sets
| journal = American Journal of Mathematics
| volume = 63
| year = 1941
| pages = 600–610
| mr = 0004862
| doi = 10.2307/2371374
| issue = 3
| publisher = The Johns Hopkins University Press
| jstor = 2371374}}.
  • {{citation

| first1 = J. | last1 = Fox | first2 = J. | last2 = Pach | author2-link = János Pach
| title = String graphs and incomparability graphs
| journal = Advances in Mathematics
| volume = 230
| issue = 3
| year = 2012
| doi = 10.1016/j.aim.2012.03.011
| url = http://www.renyi.hu/~pach/publications/stringpartial071709.pdf
| pages = 1381–1401
  • {{citation

| last = Gallai | first = Tibor
| authorlink=Tibor Gallai
| title = Transitiv orientierbare Graphen
| journal = Acta Math. Acad. Sci. Hung.
| volume = 18
| year = 1967
| pages = 25–66
| mr = 0221974
| doi = 10.1007/BF02020961}}.
  • {{citation

| last = Ghouila-Houri | first = Alain
| title = Caractérisation des graphes non orientés dont on peut orienter les arrêtes de manière à obtenir le graphe d'une relation d'ordre
| journal = Les Comptes rendus de l'Académie des sciences
| volume = 254
| year = 1962
| pages = 1370–1371
| mr =0172275}}.
  • {{citation

| last1 = Gilmore | first1 = P. C. | last2 = Hoffman | first2 = A. J.
| title = A characterization of comparability graphs and of interval graphs
| journal = Canadian Journal of Mathematics
| volume = 16
| year = 1964
| pages = 539–548
| mr = 0175811
| doi = 10.4153/CJM-1964-055-5}}.
  • {{citation

| last = Golumbic | first = Martin Charles | authorlink = Martin Charles Golumbic
| title = Algorithmic Graph Theory and Perfect Graphs
| publisher = Academic Press
| year = 1980
| isbn = 0-12-289260-7}}.
  • {{citation

| first1 = M. | last1 = Golumbic | first2 = D. | last2 = Rotem | first3 = J. | last3 = Urrutia | author3-link = Jorge Urrutia Galicia
| title = Comparability graphs and intersection graphs
| journal = Discrete Mathematics
| volume = 43
| year = 1983
| pages = 37–46
| issue = 1
| doi = 10.1016/0012-365X(83)90019-5}}.
  • {{citation

| last = Jung | first = H. A.
| title = On a class of posets and the corresponding comparability graphs
| journal = Journal of Combinatorial Theory, Series B
| volume = 24
| year = 1978
| issue = 2
| pages = 125–133
| mr = 0491356
| doi = 10.1016/0095-8956(78)90013-8}}.
  • {{citation

| first = L. | last = Lovász | authorlink = László Lovász
| contribution = Perfect graphs
| title = Selected Topics in Graph Theory
| volume = 2
| publisher = Academic Press
| location = London
| year = 1983
| pages = 55–87}}.
  • {{citation

| last = Maffray | first = Frédéric
| contribution = On the coloration of perfect graphs
| doi = 10.1007/0-387-22444-0_3
| editor1-last = Reed | editor1-first = Bruce A. | editor1-link = Bruce Reed (mathematician)
| editor2-last = Sales | editor2-first = Cláudia L.
| pages = 65–84
| publisher = Springer-Verlag
| series = CMS Books in Mathematics
| title = Recent Advances in Algorithms and Combinatorics
| volume = 11
| year = 2003}}.
  • {{citation

| last1 = McConnell | first1 = R. M. | last2 = Spinrad | first2 = J.
| contribution = Linear-time transitive orientation
| title = 8th ACM-SIAM Symposium on Discrete Algorithms
| year = 1997
| pages = 19–25}}.
  • {{citation

| last = Seymour | first = Paul | author-link = Paul Seymour (mathematician)
| issue = 109
| journal = Gazette des Mathématiciens
| mr = 2245898
| pages = 69–83
| title = How the proof of the strong perfect graph conjecture was found
| url = http://users.encs.concordia.ca/~chvatal/perfect/pds.pdf
| year = 2006}}.
  • {{citation

| last = Trotter | first = William T.
| title = Combinatorics and Partially Ordered Sets — Dimension Theory
| publisher = Johns Hopkins University Press
| year = 1992}}.
  • {{citation

| last = Urrutia | first = Jorge | authorlink = Jorge Urrutia Galicia
| title = Partial orders and Euclidean geometry
| booktitle = Algorithms and Order
| editor = Rival, I.
| year = 1989
| publisher = Kluwer Academic Publishers
| pages = 327–436}}.{{refend}}

3 : Order theory|Graph families|Perfect graphs

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/17 8:12:33