词条 | Conjugate points |
释义 |
In differential geometry, conjugate points are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoint is that conjugate points tell when the geodesics fail to be length-minimizing. Geodesics are locally length-minimizing, but, for example, on a sphere, any geodesic from the north-pole fail to be length-minimizing if it passes through the south-pole.[1] DefinitionSuppose p and q are points on a Riemannian manifold, and is a geodesic that connects p and q. Then p and q are conjugate points along if there exists a non-zero Jacobi field along that vanishes at p and q. Recall that any Jacobi field can be written as the derivative of a geodesic variation (see the article on Jacobi fields). Therefore, if p and q are conjugate along , one can construct a family of geodesics that start at p and almost end at q. In particular, if is the family of geodesics whose derivative in s at generates the Jacobi field J, then the end point of the variation, namely , is the point q only up to first order in s. Therefore, if two points are conjugate, it is not necessary that there exist two distinct geodesics joining them. Examples
See also
References1. ^Cheeger, Ebin. Comparison Theorems in Riemannian Geometry. North-Holland Publishing Company, 1975, pp. 17-18. {{DEFAULTSORT:Conjugate Points}} 1 : Riemannian geometry |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。