请输入您要查询的百科知识:

 

词条 Cumulative hierarchy
释义

  1. Reflection principle

  2. Examples

  3. References

In mathematical set theory, a cumulative hierarchy is a family of sets Wα indexed by ordinals α such that

  • WαWα+1
  • If α is a limit then Wα = ∪β<α Wβ

It is also sometimes assumed that Wα+1P(Wα) or that W0 is empty.

The union W of the sets of a cumulative hierarchy is often used as a model of set theory.

The phrase "the cumulative hierarchy" usually refers to the standard cumulative hierarchy Vα of the Von Neumann universe with Vα+1=P(Vα) introduced by {{harvtxt|Zermelo|1930}}

Reflection principle

A cumulative hierarchy satisfies a form of the reflection principle: any formula of the language of set theory that holds in the union W of the hierarchy also holds in some stages Wα.

Examples

  • The Von Neumann universe is built from a cumulative hierarchy Vα.
  • The sets Lα of the constructible universe form a cumulative hierarchy.
  • The Boolean-valued models constructed by forcing are built using a cumulative hierarchy.
  • The well founded sets in a model of set theory (possibly not satisfying the axiom of foundation) form a cumulative hierarchy whose union satisfies the axiom of foundation.

References

  • {{cite book | last1=Jech | first1=Thomas | author1-link=Thomas Jech | title=Set Theory | edition=Third Millennium | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-44085-7 | year=2003 | zbl=1007.03002 }}
  • {{cite journal|ref=harv|last1=Zermelo|first1=Ernst|author1-link=Ernst Zermelo|title=Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre|journal=Fundamenta Mathematicae|volume=16|year=1930|pages=29–47}}

1 : Set theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 13:38:02