请输入您要查询的百科知识:

 

词条 Cyclin-dependent kinase 9
释义

  1. Function

  2. Interactions

  3. References

  4. Further reading

  5. External links

{{Infobox_gene}}

Cyclin-dependent kinase 9 or CDK9 is a cyclin-dependent kinase associated with P-TEFb.

Function

The protein encoded by this gene is a member of the cyclin-dependent kinase (CDK) family. CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS.[1]

CDK9 is also known to associate with other proteins such as TRAF2, and be involved in differentiation of skeletal muscle.[2]

Interactions

CDK9 has been shown to interact with:

{{div col|colwidth=20em}}
  • Androgen receptor,[3]
  • CDC34[4] and
  • CCNK,[4]
  • CCNT1,[4][7][5][6][7][8][9][10][11]
  • CCNT2,[12]
  • MYBL2,[10]
  • RELA,[13]
  • RB1,[14]
  • SKP1A,[9] and
  • SUPT5H.[11]
{{Div col end}}

References

1. ^{{cite web | title = Entrez Gene: CDK9 cyclin-dependent kinase 9 (CDC2-related kinase)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1025| accessdate = }}
2. ^{{cite journal | vauthors = MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, Giordano A | title = Binding of CDK9 to TRAF2 | journal = J. Cell. Biochem. | volume = 71 | issue = 4 | pages = 467–78 | year = 1998 | pmid = 9827693 | doi = 10.1002/(SICI)1097-4644(19981215)71:4<467::AID-JCB2>3.0.CO;2-G }}
3. ^{{cite journal | date = March 2001 | vauthors = Lee DK, Duan HO, Chang C | title = Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation | journal = J. Biol. Chem. | volume = 276 | issue = 13 | pages = 9978–84 | pmid = 11266437 | doi = 10.1074/jbc.M002285200}}
4. ^{{cite journal | date = December 1999 | vauthors = Fu TJ, Peng J, Lee G, Price DH, Flores O | title = Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription | journal = J. Biol. Chem. | volume = 274 | issue = 49 | pages = 34527–30 | pmid = 10574912 | doi = 10.1074/jbc.274.49.34527}}
5. ^{{cite journal | date = July 2004 | vauthors = Cabart P, Chew HK, Murphy S | title = BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II | journal = Oncogene | volume = 23 | issue = 31 | pages = 5316–29 | pmid = 15107825 | doi = 10.1038/sj.onc.1207684}}
6. ^{{cite journal | date = September 2003 | vauthors = Young TM, Wang Q, Pe'ery T, Mathews MB | title = The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription | journal = Mol. Cell. Biol. | volume = 23 | issue = 18 | pages = 6373–84 | pmid = 12944466 | pmc = 193714 | doi = 10.1128/MCB.23.18.6373-6384.2003}}
7. ^{{cite journal | date = July 2003 | vauthors = Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O | title = MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner | journal = Mol. Cell. Biol. | volume = 23 | issue = 14 | pages = 4859–69 | pmid = 12832472 | pmc = 162212 | doi = 10.1128/MCB.23.14.4859-4869.2003}}
8. ^{{cite journal | date = March 2003 | vauthors = Hoque M, Young TM, Lee CG, Serrero G, Mathews MB, Pe'ery T | title = The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription | journal = Mol. Cell. Biol. | volume = 23 | issue = 5 | pages = 1688–702 | pmid = 12588988 | pmc = 151712 | doi = 10.1128/MCB.23.5.1688-1702.2003}}
9. ^{{cite journal | date = December 2001 | vauthors = Kiernan RE, Emiliani S, Nakayama K, Castro A, Labbé JC, Lorca T, Nakayama Ki K, Benkirane M | title = Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome | journal = Mol. Cell. Biol. | volume = 21 | issue = 23 | pages = 7956–70 | pmid = 11689688 | pmc = 99964 | doi = 10.1128/MCB.21.23.7956-7970.2001}}
10. ^{{cite journal | date = January 2000 | vauthors = De Falco G, Bagella L, Claudio PP, De Luca A, Fu Y, Calabretta B, Sala A, Giordano A | title = Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation | journal = Oncogene | volume = 19 | issue = 3 | pages = 373–9 | pmid = 10656684 | doi = 10.1038/sj.onc.1203305}}
11. ^{{cite journal | date = September 2000 | vauthors = Garber ME, Mayall TP, Suess EM, Meisenhelder J, Thompson NE, Jones KA | title = CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA | journal = Mol. Cell. Biol. | volume = 20 | issue = 18 | pages = 6958–69 | pmid = 10958691 | pmc = 88771 | doi = 10.1128/MCB.20.18.6958-6969.2000}}
12. ^{{cite journal | date = March 1998 | vauthors = Peng J, Zhu Y, Milton JT, Price DH | title = Identification of multiple cyclin subunits of human P-TEFb | journal = Genes Dev. | volume = 12 | issue = 5 | pages = 755–62 | pmid = 9499409 | pmc = 316581 | doi = 10.1101/gad.12.5.755}}
13. ^{{cite journal | date = August 2002 | vauthors = Amini S, Clavo A, Nadraga Y, Giordano A, Khalili K, Sawaya BE | title = Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells | journal = Oncogene | volume = 21 | issue = 37 | pages = 5797–803 | pmid = 12173051 | doi = 10.1038/sj.onc.1205754}}
14. ^{{cite journal | date = June 2002 | vauthors = Simone C, Bagella L, Bellan C, Giordano A | title = Physical interaction between pRb and cdk9/cyclinT2 complex | journal = Oncogene | volume = 21 | issue = 26 | pages = 4158–65 | pmid = 12037672 | doi = 10.1038/sj.onc.1205511}}

Further reading

{{refbegin | 2}}
  • {{cite journal | author=Jeang KT |title=Tat, Tat-associated kinase, and transcription. |journal=J. Biomed. Sci. |volume=5 |issue= 1 |pages= 24–7 |year= 1998 |pmid= 9570510 |doi=10.1007/BF02253352 }}
  • {{cite journal | vauthors=Yankulov K, Bentley D |title=Transcriptional control: Tat cofactors and transcriptional elongation. |journal=Curr. Biol. |volume=8 |issue= 13 |pages= R447–9 |year= 1998 |pmid= 9651670 |doi=10.1016/S0960-9822(98)70289-1 }}
  • {{cite journal | vauthors=Romano G, Kasten M, De Falco G |title=Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression. |journal=J. Cell. Biochem. |volume=75 |issue= 3 |pages= 357–68 |year= 2000 |pmid= 10536359 |doi=10.1002/(SICI)1097-4644(19991201)75:3<357::AID-JCB1>3.0.CO;2-K |display-authors=etal}}
  • {{cite journal | vauthors=Marcello A, Zoppé M, Giacca M |title=Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator. |journal=IUBMB Life |volume=51 |issue= 3 |pages= 175–81 |year= 2002 |pmid= 11547919 |doi=10.1080/152165401753544241 }}
  • {{cite journal | vauthors=Huigen MC, Kamp W, Nottet HS |title=Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection. |journal=Eur. J. Clin. Invest. |volume=34 |issue= 1 |pages= 57–66 |year= 2004 |pmid= 14984439 |doi=10.1111/j.1365-2362.2004.01282.x }}
  • {{cite journal | vauthors=Rice AP, Herrmann CH |title=Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages. |journal=Curr. HIV Res. |volume=1 |issue= 4 |pages= 395–404 |year= 2004 |pmid= 15049426 |doi=10.2174/1570162033485159 }}
  • {{cite journal | vauthors=Minghetti L, Visentin S, Patrizio M |title=Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions. |journal=Neurochem. Res. |volume=29 |issue= 5 |pages= 965–78 |year= 2004 |pmid= 15139295 |doi=10.1023/B:NERE.0000021241.90133.89 |display-authors=etal}}
  • {{cite journal | vauthors=Liou LY, Herrmann CH, Rice AP |title=HIV-1 infection and regulation of Tat function in macrophages. |journal=Int. J. Biochem. Cell Biol. |volume=36 |issue= 9 |pages= 1767–75 |year= 2005 |pmid= 15183343 |doi= 10.1016/j.biocel.2004.02.018 }}
  • {{cite journal | vauthors=Pugliese A, Vidotto V, Beltramo T |title=A review of HIV-1 Tat protein biological effects. |journal=Cell Biochem. Funct. |volume=23 |issue= 4 |pages= 223–7 |year= 2005 |pmid= 15473004 |doi= 10.1002/cbf.1147 |display-authors=etal}}
  • {{cite journal | vauthors=Bannwarth S, Gatignol A |title=HIV-1 TAR RNA: the target of molecular interactions between the virus and its host. |journal=Curr. HIV Res. |volume=3 |issue= 1 |pages= 61–71 |year= 2005 |pmid= 15638724 |doi=10.2174/1570162052772924 }}
  • {{cite journal | vauthors=Gibellini D, Vitone F, Schiavone P, Re MC |title=HIV-1 tat protein and cell proliferation and survival: a brief review. |journal=New Microbiol. |volume=28 |issue= 2 |pages= 95–109 |year= 2005 |pmid= 16035254 |doi= }}
  • {{cite journal | author=Peruzzi F |title=The multiple functions of HIV-1 Tat: proliferation versus apoptosis. |journal=Front. Biosci. |volume=11 |issue= |pages= 708–17 |year= 2006 |pmid= 16146763 |doi=10.2741/1829 }}
{{refend}}

External links

  • {{MeshName|Cyclin-Dependent+Kinase+9}}
  • Drosophila Cyclin dependent kinase 9 - The Interactive Fly
  • {{UCSC genome browser|CDK9}}
  • {{UCSC gene details|CDK9}}
{{Cell cycle proteins}}{{Serine/threonine-specific protein kinases}}{{Enzymes}}{{Portal bar|Molecular and Cellular Biology|border=no}}{{2.7-enzyme-stub}}{{DEFAULTSORT:Cyclin-dependent kinase 09}}

3 : Cell cycle|Proteins|EC 2.7.11

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/27 17:30:21