请输入您要查询的百科知识:

 

词条 Cancer immunotherapy
释义

  1. Categories

  2. Cellular immunotherapy

     Dendritic cell therapy   Approved drugs    CAR-T cell therapy    Approved drugs  

  3. Antibody therapy

     Antibody types    Conjugation    Fc regions    Human/non-human balance   Cell death mechanisms  Antibody-dependent cell-mediated cytotoxicity (ADCC)  Complement  FDA-approved antibodies  Alemtuzumab  Atezolizumab  Ipilimumab   Nivolumab    Ofatumumab    Pembrolizumab    Rituximab  

  4. Cytokine therapy

     Interferon  Interleukin 

  5. Combination immunotherapy

  6. Polysaccharide-K

  7. Genetic pre-testing for therapeutic significance

  8. Research

     Adoptive T-cell therapy  Anti-CD47 therapy  Anti-GD2 antibodies   CTLA-4 blockade   PD-1 inhibitors  PD-L1 inhibitors  Other  Oncolytic virus  Polysaccharides   Neoantigens  

  9. See also

  10. References

  11. External links

{{Use dmy dates|date=December 2018}}{{Short description|The artificial stimulation of the immune system to treat cancer, improving on the system's natural ability to fight cancer}}{{Infobox medical intervention
|name=Cancer immunotherapy|synonym=|image=Peptide bound to Rituximab FAB.png|caption=Peptide epitope of CD20 bound to rituximab's FAB|alt=|pronounce=|specialty=|synonyms=|ICD10=|ICD9=|ICD9unlinked=|CPT=|MeshID=|LOINC=|other_codes=|MedlinePlus=|eMedicine=}}

Cancer immunotherapy (sometimes called immuno-oncology) is the artificial stimulation of the immune system to treat cancer, improving on the system's natural ability to fight cancer. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology. It exploits the fact that cancer cells often have tumor antigens, molecules on their surface that can be detected by the antibody proteins of the immune system, binding to them. The tumor antigens are often proteins or other macromolecules (e.g. carbohydrates). Normal antibodies bind to external pathogens, but the modified immunotherapy antibodies bind to the tumor antigens marking and identifying the cancer cells for the immune system to inhibit or kill.

{{TOC limit}}

Categories

Immunotherapies can be categorized as active, passive or hybrid (active and passive). Active immunotherapy directs the immune system to attack tumor cells by targeting tumor antigens. Passive immunotherapies enhance existing anti-tumor responses and include the use of monoclonal antibodies, lymphocytes and cytokines.

A wide range of cancers can be treated by various immunotherapy medicines that have been approved in many jurisdictions around the world.[1]

Passive antibody therapies commonly involve the targeting of Cell surface receptors and include CD20, CD274 and CD279 antibodies. Once bound to a cancer antigen, the modified antibodies can induce antibody-dependent cell-mediated cytotoxicity, activate the complement system, or prevent a receptor from interacting with its ligand, all of which can lead to cell death.

Approved immunotherapy antibodies include alemtuzumab, ipilimumab, nivolumab, ofatumumab, pembrolizumab and rituximab.

Active cellular therapies usually involve the removal of immune cells from the blood or from a tumor. Those specific for the tumor are grown in culture and returned to the patient where they attack the tumor; alternatively, immune cells can be genetically engineered to express a tumor-specific receptor, cultured and returned to the patient. Cell types that can be used in this way are natural killer (NK) cells, lymphokine-activated killer cells, cytotoxic T cells and dendritic cells.

Cellular immunotherapy

Dendritic cell therapy

Dendritic cell therapy provokes anti-tumor responses by causing dendritic cells to present tumor antigens to lymphocytes, which activates them, priming them to kill other cells that present the antigen. Dendritic cells are antigen presenting cells (APCs) in the mammalian immune system.[2] In cancer treatment they aid cancer antigen targeting.[3] The only approved cellular cancer therapy based on dendritic cells is sipuleucel-T.

One method of inducing dendritic cells to present tumor antigens is by vaccination with autologous tumor lysates[4] or short peptides (small parts of protein that correspond to the protein antigens on cancer cells). These peptides are often given in combination with adjuvants (highly immunogenic substances) to increase the immune and anti-tumor responses. Other adjuvants include proteins or other chemicals that attract and/or activate dendritic cells, such as granulocyte macrophage colony-stimulating factor (GM-CSF). The most common source of antigens used for dendritic cell vaccine in Glioblastoma (GBM) as an aggressive brain tumor were whole tumor lysate, CMV antigen RNA and tumor associated peptides like EGFRvIII.[5]

Dendritic cells can also be activated in vivo by making tumor cells express GM-CSF. This can be achieved by either genetically engineering tumor cells to produce GM-CSF or by infecting tumor cells with an oncolytic virus that expresses GM-CSF.

Another strategy is to remove dendritic cells from the blood of a patient and activate them outside the body. The dendritic cells are activated in the presence of tumor antigens, which may be a single tumor-specific peptide/protein or a tumor cell lysate (a solution of broken down tumor cells). These cells (with optional adjuvants) are infused and provoke an immune response.

Dendritic cell therapies include the use of antibodies that bind to receptors on the surface of dendritic cells. Antigens can be added to the antibody and can induce the dendritic cells to mature and provide immunity to the tumor. Dendritic cell receptors such as TLR3, TLR7, TLR8 or CD40 have been used as antibody targets.[3] Dendritic cell-NK cell interface also has an important role in immunotherapy. The design of new dendritic cell-based vaccination strategies should also encompass NK cell-stimulating potency. It is critical to systematically incorporate NK cells monitoring as an outcome in antitumor DC-based clinical trials.[6]

Approved drugs

Sipuleucel-T (Provenge) was approved for treatment of asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer in 2010. The treatment consists of removal of antigen presenting cells from blood by leukapheresis and growing them with the fusion protein PA2024 made from GM-CSF and prostate-specific prostatic acid phosphatase (PAP) and reinfused. This process is repeated three times.[7][8][9][10]

CAR-T cell therapy

{{main|Chimeric antigen receptor}}

The premise of CAR-T immunotherapy is to modify T cells to recognize cancer cells in order to more effectively target and destroy them. Scientists harvest T cells from people, genetically alter them to add a chimeric antigen receptor (CAR) that specifically recognizes cancer cells, then infuse the resulting CAR-T cells into patients to attack their tumors.

Approved drugs

Tisagenlecleucel (Kymriah), a chimeric antigen receptor (CAR-T) therapy, was approved by FDA in 2017 to treat acute lymphoblastic leukemia (ALL).[11] This treatment removes CD19 positive cells (B-cells) from the body (including the diseased cells, but also normal antibody producing cells).

Axicabtagene ciloleucel (Yescarta) is another CAR-T therapeutic, approved in 2017 for treatment of diffuse large B-cell lymphoma (DLBCL).[12]

Antibody therapy

{{main|Monoclonal antibody therapy}}

Antibodies are a key component of the adaptive immune response, playing a central role in both recognizing foreign antigens and stimulating an immune response. Antibodies are Y-shaped proteins produced by some B cells and are composed of two regions: an antigen-binding fragment (Fab), which binds to antigens, and a Fragment crystallizable (Fc) region, which interacts with so-called Fc receptors that are expressed on the surface of different immune cell types including macrophages, neutrophils and NK cells. Many immunotherapeutic regimens involve antibodies. Monoclonal antibody technology engineers and generates antibodies against specific antigens, such as those present on tumor surfaces. These antibodies that are specific to the antigens of the tumor, can then be injected into a tumor.

Antibody types

Conjugation

Two types are used in cancer treatments:[14]

  • Naked monoclonal antibodies are antibodies without added elements. Most antibody therapies use this antibody type.
  • Conjugated monoclonal antibodies are joined to another molecule, which is either cytotoxic or radioactive. The toxic chemicals are those typically used as chemotherapy drugs, but other toxins can be used. The antibody binds to specific antigens on cancer cell surfaces, directing the therapy to the tumor. Radioactive compound-linked antibodies are referred to as radiolabelled. Chemolabelled or immunotoxins antibodies are tagged with chemotherapeutic molecules or toxins, respectively.[15]

Fc regions

Fc's ability to bind Fc receptors is important because it allows antibodies to activate the immune system. Fc regions are varied: they exist in numerous subtypes and can be further modified, for example with the addition of sugars in a process called glycosylation. Changes in the Fc region can alter an antibody's ability to engage Fc receptors and, by extension, will determine the type of immune response that the antibody triggers.[13] Many cancer immunotherapy drugs, including PD-1 and PD-L1 inhibitors, are antibodies. For example, immune checkpoint blockers targeting PD-1 are antibodies designed to bind PD-1 expressed by T cells and reactivate these cells to eliminate tumors.[14] Anti-PD-1 drugs contain not only an Fab region that binds PD-1 but also an Fc region. Experimental work indicates that the Fc portion of cancer immunotherapy drugs can affect the outcome of treatment. For example, anti-PD-1 drugs with Fc regions that bind inhibitory Fc receptors can have decreased therapeutic efficacy.[15] Imaging studies have further shown that the Fc region of anti-PD-1 drugs can bind Fc receptors expressed by tumor-associated macrophages. This process removes the drugs from their intended targets (i.e. PD-1 molecules expressed on the surface of T cells) and limits therapeutic efficacy.[16] Furthermore, antibodies targeting the co-stimulatory protein CD40 require engagement with selective Fc receptors for optimal therapeutic efficacy.[17] Together, these studies underscore the importance of Fc status in antibody-based immune checkpoint targeting strategies.

Human/non-human balance

Antibodies are also referred to as murine, chimeric, humanized and human. Murine antibodies are from a different species and carry a risk of immune reaction. Chimeric antibodies attempt to reduce murine antibodies' immunogenicity by replacing part of the antibody with the corresponding human counterpart, known as the constant region. Humanized antibodies are almost completely human; only the complementarity determining regions of the variable regions are derived from murine sources. Human antibodies have been produced using unmodified human DNA.[18]

Cell death mechanisms

Antibody-dependent cell-mediated cytotoxicity (ADCC)

Antibody-dependent cell-mediated cytotoxicity (ADCC) requires antibodies to bind to target cell surfaces. Antibodies are formed of a binding region (Fab) and the Fc region that can be detected by immune system cells via their Fc surface receptors. Fc receptors are found on many immune system cells, including NK cells. When NK cells encounter antibody-coated cells, the latter's Fc regions interact with their Fc receptors, releasing perforin and granzyme B to kill the tumor cell. Examples include Rituximab, Ofatumumab and Alemtuzumab. Antibodies under development have altered Fc regions that have higher affinity for a specific type of Fc receptor, FcγRIIIA, which can dramatically increase effectiveness.[19][20]

Complement

The complement system includes blood proteins that can cause cell death after an antibody binds to the cell surface (the classical complement pathway, among the ways of complement activation). Generally the system deals with foreign pathogens, but can be activated with therapeutic antibodies in cancer. The system can be triggered if the antibody is chimeric, humanized or human; as long as it contains the IgG1 Fc region. Complement can lead to cell death by activation of the membrane attack complex, known as complement-dependent cytotoxicity; enhancement of antibody-dependent cell-mediated cytotoxicity; and CR3-dependent cellular cytotoxicity. Complement-dependent cytotoxicity occurs when antibodies bind to the cancer cell surface, the C1 complex binds to these antibodies and subsequently protein pores are formed in the cancer cell membrane.[21]

FDA-approved antibodies

Cancer immunotherapy:Monoclonal antibodies[22][23]
AntibodyBrand nameTypeTargetApproval dateApproved treatment(s)
Alemtuzumab Campath humanized CD52 2001 B-cell chronic lymphocytic leukemia (CLL)[24]
Atezolizumab Tecentriq humanized PD-L1 2016 bladder cancer[25]
AvelumabBavenciohumanPD-L12017metastatic Merkel cell carcinoma[26]
Ipilimumab Yervoy human CTLA4 2011metastatic melanoma[27]
Ofatumumab Arzerra human CD202009 refractory CLL[28]
Nivolumab Opdivo human PD-1 2014 unresectable or metastatic melanoma, squamous non-small cell lung cancer, Renal cell carcinoma, colorectal cancer, hepatocellular carcinoma, classical hodgkin lymphoma[29][30]
PembrolizumabKeytrudahumanized PD-12014unresectable or metastatic melanoma, squamous non-small cell lung cancer (NSCLC) [31], Hodgkin's lymphoma[32], Merkel-cell carcinoma (MCC)[33], primary mediastinal B-cell lymphoma (PMBCL)[34], stomach cancer, cervical cancer[35]
Rituximab Rituxan, Mabthera chimeric CD20 1997non-Hodgkin lymphoma[36]
DurvalumabImfinzihumanPD-L12017bladder cancer[37] non-small cell lung cancer[38]

Alemtuzumab

Alemtuzumab (Campath-1H) is an anti-CD52 humanized IgG1 monoclonal antibody indicated for the treatment of fludarabine-refractory chronic lymphocytic leukemia (CLL), cutaneous T-cell lymphoma, peripheral T-cell lymphoma and T-cell prolymphocytic leukemia. CD52 is found on >95% of peripheral blood lymphocytes (both T-cells and B-cells) and monocytes, but its function in lymphocytes is unknown. It binds to CD52 and initiates its cytotoxic effect by complement fixation and ADCC mechanisms. Due to the antibody target (cells of the immune system) common complications of alemtuzumab therapy are infection, toxicity and myelosuppression.[39][40][41]

Atezolizumab

{{Main|Atezolizumab}}

Durvalumab (Imfinzi) is a human immunoglobulin G1 kappa (IgG1κ) monoclonal antibody that blocks the interaction of programmed cell death ligand 1 (PD-L1) with the PD-1 and CD80 (B7.1) molecules. Durvalumab is approved for the treatment of patients with locally advanced or metastatic urothelial carcinoma who:

  • have disease progression during or following platinum-containing chemotherapy.
  • have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

Ipilimumab

Ipilimumab (Yervoy) is a human IgG1 antibody that binds the surface protein CTLA4. In normal physiology T-cells are activated by two signals: the T-cell receptor binding to an antigen-MHC complex and T-cell surface receptor CD28 binding to CD80 or CD86 proteins. CTLA4 binds to CD80 or CD86, preventing the binding of CD28 to these surface proteins and therefore negatively regulates the activation of T-cells.[42][43][44][45]

Active cytotoxic T-cells are required for the immune system to attack melanoma cells. Normally inhibited active melanoma-specific cytotoxic T-cells can produce an effective anti-tumor response. Ipilumumab can cause a shift in the ratio of regulatory T-cells to cytotoxic T-cells to increase the anti-tumor response. Regulatory T-cells inhibit other T-cells, which may benefit the tumor.[42][43][44][45]

Nivolumab

{{Main|Nivolumab}}

Ofatumumab

Ofatumumab is a second generation human IgG1 antibody that binds to CD20. It is used in the treatment of chronic lymphocytic leukemia (CLL) because the cancerous cells of CLL are usually CD20-expressing B-cells. Unlike rituximab, which binds to a large loop of the CD20 protein, ofatumumab binds to a separate, small loop. This may explain their different characteristics. Compared to rituximab, ofatumumab induces complement-dependent cytotoxicity at a lower dose with less immunogenicity.[46][47]

Pembrolizumab

As of 2019, pembrolizumab, which blocks PD-1, programmed cell death protein 1, has been used via intravenous infusion to treat inoperable or metastatic melanoma, metastatic non-small cell lung cancer (NSCLC) in certain situations, as a second-line treatment for head and neck squamous cell carcinoma (HNSCC), after platinum-based chemotherapy, and for the treatment of adult and pediatric patients with refractory classic Hodgkin's lymphoma (cHL).[48][49] It is also indicated for certain patients with urothelial carcinoma, stomach cancer and cervical cancer[50].

Rituximab

Rituximab is a chimeric monoclonal IgG1 antibody specific for CD20, developed from its parent antibody Ibritumomab. As with ibritumomab, rituximab targets CD20, making it effective in treating certain B-cell malignancies. These include aggressive and indolent lymphomas such as diffuse large B-cell lymphoma and follicular lymphoma and leukemias such as B-cell chronic lymphocytic leukemia. Although the function of CD20 is relatively unknown, CD20 may be a calcium channel involved in B-cell activation. The antibody's mode of action is primarily through the induction of ADCC and complement-mediated cytotoxicity. Other mechanisms include apoptosis{{Clarify|reason=Vague|date=April 2016}} and cellular growth arrest. Rituximab also increases the sensitivity of cancerous B-cells to chemotherapy.[51][52][52][53][54][55]

Cytokine therapy

Cytokines are proteins produced by many types of cells present within a tumor. They can modulate immune responses. The tumor often employs them to allow it to grow and reduce the immune response. These immune-modulating effects allow them to be used as drugs to provoke an immune response. Two commonly used cytokines are interferons and interleukins.[56]

Interleukin-2 and interferon-α are cytokines, proteins that regulate and coordinate the behavior of the immune system. They have the ability to enhance anti-tumor activity and thus can be used as passive cancer treatments. Interferon-α is used in the treatment of hairy-cell leukaemia, AIDS-related Kaposi's sarcoma, follicular lymphoma, chronic myeloid leukaemia and malignant melanoma. Interleukin-2 is used in the treatment of malignant melanoma and renal cell carcinoma.

Interferon

Interferons are produced by the immune system. They are usually involved in anti-viral response, but also have use for cancer. They fall in three groups: type I (IFNα and IFNβ), type II (IFNγ) and type III (IFNλ). IFNα has been approved for use in hairy-cell leukaemia, AIDS-related Kaposi's sarcoma, follicular lymphoma, chronic myeloid leukaemia and melanoma. Type I and II IFNs have been researched extensively and although both types promote anti-tumor immune system effects, only type I IFNs have been shown to be clinically effective. IFNλ shows promise for its anti-tumor effects in animal models.[57][58]

Unlike type I IFNs, Interferon gamma is not approved yet for the treatment of any cancer.However, improved survival was observed when Interferon gamma was administrated to patients with bladder carcinoma and melanoma cancers. The most promising result was achieved in patients with stage 2 and 3 of ovarian carcinoma.The in vitro study of IFN-gamma in cancer cells is more extensive and results indicate anti-proliferative activity of IFN-gamma leading to the growth inhibition or cell death, generally induced by apoptosis but sometimes by autophagy.[59]

Interleukin

Interleukins have an array of immune system effects. Interleukin-2 is used in the treatment of malignant melanoma and renal cell carcinoma. In normal physiology it promotes both effector T cells and T-regulatory cells, but its exact mechanism of action is unknown.[56][60]

Combination immunotherapy

Combining various immunotherapies such as PD1 and CTLA4 inhibitors can enhance anti-tumor response leading to durable responses.[61][62]

Combining ablation therapy of tumors with immunotherapy enhances the immunostimulating response and has synergistic effects for curative metastatic cancer treatment.[63]

Combining checkpoint immunotherapies with pharmaceutical agents has the potential to improve response, and such combination therapies are a highly investigated area of clinical investigation.[64] Immunostimulatory drugs such as CSF-1R inhibitors and TLR agonists have been particularly effective in this setting.[65][66]

Polysaccharide-K

Japan's Ministry of Health, Labour and Welfare approved the use of polysaccharide-K extracted from the mushroom, Coriolus versicolor, in the 1980s, to stimulate the immune systems of patients undergoing chemotherapy. It is a dietary supplement in the US and other jurisdictions.[67]

Genetic pre-testing for therapeutic significance

Because of the high cost of many of the immunotherapy medications and the reluctance of medical insurance companies to prepay for their prescriptions various test methods have been proposed, to attempt to forecast the effectiveness of these medications. The detection of PD-L1 protein seemed to be an indication of cancer susceptible to several immunotherapy medications, but research found that both the lack of this protein or its inclusion in the cancerous tissue was inconclusive, due to the little-understood varying quantities of the protein during different times and locations within the infected cells and tissue.[68][69][70]

In 2018 some genetic indications such as Tumor Mutational Burden (TMB, the number of mutations within a targeted genetic region in the cancerous cell's DNA), and Microsatellite instability (MSI, the quantity of impaired DNA mismatch leading to probable mutations), have been approved by the FDA as good indicators for the probability of effective treatment of immunotherapy medication for certain cancers, but research is still in progress.[71][72]

In some cases the FDA has approved genetic tests for medication that is specific to certain genetic markers. For example, the FDA approved BRAF associated medication for metastatic melanoma, to be administered to patients after testing for the BRAF genetic mutation.[73]

Tests of this sort are being widely advertised for general cancer treatment and are expensive. In the past, some genetic testing for cancer treatment has been involved in scams such as the Duke University Cancer Fraud scandal, or claimed to be hoaxes.[74][75][76]

Research

Adoptive T-cell therapy

Adoptive T cell therapy is a form of passive immunization by the transfusion of T-cells (adoptive cell transfer). They are found in blood and tissue and usually activate when they find foreign pathogens. Specifically they activate when the T-cell's surface receptors encounter cells that display parts of foreign proteins on their surface antigens. These can be either infected cells, or antigen presenting cells (APCs). They are found in normal tissue and in tumor tissue, where they are known as tumor infiltrating lymphocytes (TILs). They are activated by the presence of APCs such as dendritic cells that present tumor antigens. Although these cells can attack the tumor, the environment within the tumor is highly immunosuppressive, preventing immune-mediated tumour death.[77]

Multiple ways of producing and obtaining tumour targeted T-cells have been developed. T-cells specific to a tumor antigen can be removed from a tumor sample (TILs) or filtered from blood. Subsequent activation and culturing is performed ex vivo, with the results reinfused. Activation can take place through gene therapy, or by exposing the T cells to tumor antigens.

As of 2014, multiple ACT clinical trials were underway.[78][79][80][81][82] Importantly, one study from 2018 showed that clinical responses can be obtained in patients with metastatic melanoma resistant to multiple previous immunotherapies.[83]

The first 2 adoptive T-cell therapies, tisagenlecleucel and axicabtagene ciloleucel, were approved by the FDA in 2017.[84][12]

Another approach is adoptive transfer of haploidentical γδ T cells or NK cells from a healthy donor. The major advantage of this approach is that these cells do not cause GVHD. The disadvantage is frequently impaired function of the transferred cells.[85]

Anti-CD47 therapy

Many tumor cells overexpress CD47 to escape immunosurveilance of host immune system. CD47 binds to its receptor signal regulatory protein alpha (SIRPα) and downregulate phagocytosis of tumor cell.[86] Therefore, anti-CD47 therapy aims to restore clearance of tumor cells. Additionally, growing evidence supports the employment of tumor antigen-specific T cell response in response to anti-CD47 therapy.[87][88] A number of therapeutics is being developed, including anti-CD47 antibodies, engineered decoy receptors, anti-SIRPα antibodies and bispecific agents.[87] As of 2017, wide range of solid and hematologic malignancies were being clinically tested.[87][89]

Anti-GD2 antibodies

Carbohydrate antigens on the surface of cells can be used as targets for immunotherapy. GD2 is a ganglioside found on the surface of many types of cancer cell including neuroblastoma, retinoblastoma, melanoma, small cell lung cancer, brain tumors, osteosarcoma, rhabdomyosarcoma, Ewing's sarcoma, liposarcoma, fibrosarcoma, leiomyosarcoma and other soft tissue sarcomas. It is not usually expressed on the surface of normal tissues, making it a good target for immunotherapy. As of 2014, clinical trials were underway.[90]

=== {{anchor|Immune checkpoint blockade}} Immune checkpoints ===

{{Main|Immune checkpoint|Immunotherapy}}Immune checkpoints affect immune system function. Immune checkpoints can be stimulatory or inhibitory. Tumors can use these checkpoints to protect themselves from immune system attacks. Currently approved checkpoint therapies block inhibitory checkpoint receptors. Blockade of negative feedback signaling to immune cells thus results in an enhanced immune response against tumors.[91]

One ligand-receptor interaction under investigation is the interaction between the transmembrane programmed cell death 1 protein (PDCD1, PD-1; also known as CD279) and its ligand, PD-1 ligand 1 (PD-L1, CD274). PD-L1 on the cell surface binds to PD1 on an immune cell surface, which inhibits immune cell activity. Among PD-L1 functions is a key regulatory role on T cell activities. It appears that (cancer-mediated) upregulation of PD-L1 on the cell surface may inhibit T cells that might otherwise attack. PD-L1 on cancer cells also inhibits FAS- and interferon-dependent apoptosis, protecting cells from cytotoxic molecules produced by T cells. Antibodies that bind to either PD-1 or PD-L1 and therefore block the interaction may allow the T-cells to attack the tumor.[92]

CTLA-4 blockade

The first checkpoint antibody approved by the FDA was ipilimumab, approved in 2011 for treatment of melanoma.[93] It blocks the immune checkpoint molecule CTLA-4. Clinical trials have also shown some benefits of anti-CTLA-4 therapy on lung cancer or pancreatic cancer, specifically in combination with other drugs.[94][95] In on-going trials the combination of CTLA-4 blockade with PD-1 or PD-L1 inhibitors is tested on different types of cancer.[96]

However, patients treated with check-point blockade (specifically CTLA-4 blocking antibodies), or a combination of check-point blocking antibodies, are at high risk of suffering from immune-related adverse events such as dermatologic, gastrointestinal, endocrine, or hepatic autoimmune reactions.[97] These are most likely due to the breadth of the induced T-cell activation when anti-CTLA-4 antibodies are administered by injection in the blood stream.

Using a mouse model of bladder cancer, researchers have found that a local injection of a low dose anti-CTLA-4 in the tumour area had the same tumour inhibiting capacity as when the antibody was delivered in the blood.[98] At the same time the levels of circulating antibodies were lower, suggesting that local administration of the anti-CTLA-4 therapy might result in fewer adverse events.[98]

PD-1 inhibitors

Initial clinical trial results with IgG4 PD1 antibody Nivolumab were published in 2010.[91] It was approved in 2014. Nivolumab is approved to treat melanoma, lung cancer, kidney cancer, bladder cancer, head and neck cancer, and Hodgkin's lymphoma.[99] A 2016 clinical trial for non-small cell lung cancer failed to meet its primary endpoint for treatment in the first line setting, but is FDA approved in subsequent lines of therapy.[100]

Pembrolizumab is another PD1 inhibitor that was approved by the FDA in 2014.

Keytruda (Pembrolizumab) is approved to treat melanoma and lung cancer.[99]

Antibody BGB-A317 is a PD-1 inhibitor (designed to not bind Fc gamma receptor I) in early clinical trials.[101]

PD-L1 inhibitors

{{main|PD-L1 inhibitor}}In May 2016, PD-L1 inhibitor atezolizumab[102] was approved for treating bladder cancer.

Anti-PD-L1 antibodies currently in development include avelumab[103] and durvalumab,[104] in addition to an affimer biotherapeutic.[105]

Other

Other modes of enhancing [adoptive] immuno-therapy include targeting so-called intrinsic checkpoint blockades e.g. CISH. A number of cancer patients do not respond to immune checkpoint blockade. Response rate may be improved by combining immune checkpoint blockade with additional rationally selected anticancer therapies (out of which some may stimulate T cell infiltration into tumors). For example, targeted therapies such, radiotherapy, vasculature targeting agents, and immunogenic chemotherapy[106] can improve immune checkpoint blockade response in animal models of cancer.

Oncolytic virus

An oncolytic virus is a virus that preferentially infects and kills cancer cells. As the infected cancer cells are destroyed by oncolysis, they release new infectious virus particles or virions to help destroy the remaining tumour. Oncolytic viruses are thought not only to cause direct destruction of the tumour cells, but also to stimulate host anti-tumour immune responses for long-term immunotherapy.[107][108][109]

The potential of viruses as anti-cancer agents was first realized in the early twentieth century, although coordinated research efforts did not begin until the 1960s. A number of viruses including adenovirus, reovirus, measles, herpes simplex, Newcastle disease virus and vaccinia have now been clinically tested as oncolytic agents. T-Vec is the first FDA-approved oncolytic virus for the treatment of melanoma. A number of other oncolytic viruses are in Phase II-III development.{{citation needed|date=February 2018}}

Polysaccharides

Certain compounds found in mushrooms, primarily polysaccharides, can up-regulate the immune system and may have anti-cancer properties. For example, beta-glucans such as lentinan have been shown in laboratory studies to stimulate macrophage, NK cells, T cells and immune system cytokines and have been investigated in clinical trials as immunologic adjuvants.[110]

Neoantigens

{{Main|Neoantigen}}Many tumors express mutations. These mutations potentially create new targetable antigens (neoantigens) for use in T cell immunotherapy. The presence of CD8+ T cells in cancer lesions, as identified using RNA sequencing data, is higher in tumors with a high mutational burden. The level of transcripts associated with cytolytic activity of natural killer cells and T cells positively correlates with mutational load in many human tumors. In non–small cell lung cancer patients treated with lambrolizumab, mutational load shows a strong correlation with clinical response. In melanoma patients treated with ipilimumab, long-term benefit is also associated with a higher mutational load, although less significantly. The predicted MHC binding neoantigens in patients with a long-term clinical benefit were enriched for a series of tetrapeptide motifs that were not found in tumors of patients with no or minimal clinical benefit.[111] However, human neoantigens identified in other studies do not show the bias toward tetrapeptide signatures.[112]

See also

  • Cancer vaccine
  • Antigen 5T4
  • Coley's toxins
  • Combinatorial ablation and immunotherapy
  • Cryoimmunotherapy
  • Photoimmunotherapy

References

1. ^{{cite journal | vauthors = Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA | title = TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis | journal = Cytokine | volume = 89 | pages = 127–35 | date = January 2017 | pmid = 26854213 | doi = 10.1016/j.cyto.2016.01.021 }}
2. ^{{cite journal | vauthors = Riddell SR | title = Progress in cancer vaccines by enhanced self-presentation | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 98 | issue = 16 | pages = 8933–35 | date = July 2001 | pmid = 11481463 | pmc = 55350 | doi = 10.1073/pnas.171326398 | bibcode = 2001PNAS...98.8933R }}
3. ^{{cite journal | vauthors = Palucka K, Banchereau J|authorlink2=Jacques Banchereau | title = Dendritic-cell-based therapeutic cancer vaccines | journal = Immunity | volume = 39 | issue = 1 | pages = 38–48 | date = July 2013 | pmid = 23890062 | pmc = 3788678 | doi = 10.1016/j.immuni.2013.07.004 }}
4. ^{{cite journal | vauthors = Hirayama M, Nishimura Y | title = The present status and future prospects of peptide-based cancer vaccines | journal = International Immunology | volume = 28 | issue = 7 | pages = 319–28 | date = July 2016 | pmid = 27235694 | doi = 10.1093/intimm/dxw027 }}
5. ^{{cite book |last=Dastmalchi|first=Farhad |last2=Karachi |first2=Aida |last3=Mitchell |first3=Duane |last4=Rahman |first4=Maryam | name-list-format = vanc |title=Dendritic Cell Therapy |date=2018 |work=eLS |pages=1–27 |publisher=American Cancer Society |doi=10.1002/9780470015902.a0024243 |isbn=9780470015902 }}
6. ^{{cite journal | vauthors = Calmeiro J, Carrascal M, Gomes C, Falcão A, Cruz MT, Neves BM | title = Highlighting the Role of DC-NK Cell Interplay in Immunobiology and Immunotherapy | journal = Dendritic Cells, Intech | date = November 2018 | doi = 10.5772/intechopen.78804 }}
7. ^{{cite journal | vauthors = Gardner TA, Elzey BD, Hahn NM | title = Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer | journal = Human Vaccines & Immunotherapeutics | volume = 8 | issue = 4 | pages = 534–39 | date = April 2012 | pmid = 22832254 | doi = 10.4161/hv.19795 }}
8. ^{{cite journal | vauthors = Oudard S | title = Progress in emerging therapies for advanced prostate cancer | journal = Cancer Treatment Reviews | volume = 39 | issue = 3 | pages = 275–89 | date = May 2013 | pmid = 23107383 | doi = 10.1016/j.ctrv.2012.09.005 }}
9. ^{{cite journal | vauthors = Sims RB | title = Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer | journal = Vaccine | volume = 30 | issue = 29 | pages = 4394–97 | date = June 2012 | pmid = 22122856 | doi = 10.1016/j.vaccine.2011.11.058 }}
10. ^{{cite journal | vauthors = Shore ND, Mantz CA, Dosoretz DE, Fernandez E, Myslicki FA, McCoy C, Finkelstein SE, Fishman MN | title = Building on sipuleucel-T for immunologic treatment of castration-resistant prostate cancer | journal = Cancer Control | volume = 20 | issue = 1 | pages = 7–16 | date = January 2013 | pmid = 23302902 | doi = 10.1177/107327481302000103 }}
11. ^{{Cite web|url=https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm|title=Press Announcements – FDA approval brings first gene therapy to the United States|last=Commissioner|first=Office of the|website=fda.gov|access-date=13 December 2017}}
12. ^{{cite web|url=https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm581216.htm|title=FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma|publisher=fda.gov|date=18 October 2017|accessdate=8 November 2017}}
13. ^{{cite journal | vauthors = Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV | title = Type I and type II Fc receptors regulate innate and adaptive immunity | journal = Nature Immunology | volume = 15 | issue = 8 | pages = 707–16 | date = August 2014 | pmid = 25045879 | doi = 10.1038/ni.2939 }}
14. ^{{cite journal | vauthors = Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M | title = Safety, activity, and immune correlates of anti-PD-1 antibody in cancer | journal = The New England Journal of Medicine | volume = 366 | issue = 26 | pages = 2443–54 | date = June 2012 | pmid = 22658127 | pmc = 3544539 | doi = 10.1056/NEJMoa1200690 }}
15. ^{{cite journal | vauthors = Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV | title = FcγRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis | journal = Cancer Cell | volume = 28 | issue = 4 | pages = 543 | date = October 2015 | pmid = 28854351 | doi = 10.1016/j.ccell.2015.09.011 }}
16. ^{{cite journal | vauthors = Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RM, Weissleder R, Pittet MJ | title = In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy | journal = Science Translational Medicine | volume = 9 | issue = 389 | pages = eaal3604 | date = May 2017 | pmid = 28490665 | pmc = 5734617 | doi = 10.1126/scitranslmed.aal3604 }}
17. ^{{cite journal | vauthors = Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV | title = Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement | journal = Cancer Cell | volume = 29 | issue = 6 | pages = 820–31 | date = July 2016 | pmid = 27265505 | pmc = 4975533 | doi = 10.1016/j.ccell.2016.05.001 }}
18. ^{{cite journal | vauthors = Harding FA, Stickler MM, Razo J, DuBridge RB | title = The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions | journal = MAbs | volume = 2 | issue = 3 | pages = 256–65 | date = May–Jun 2010 | pmid = 20400861 | pmc = 2881252 | doi = 10.4161/mabs.2.3.11641 }}
19. ^{{cite journal | vauthors = Weiner LM, Surana R, Wang S | title = Monoclonal antibodies: versatile platforms for cancer immunotherapy | journal = Nature Reviews. Immunology | volume = 10 | issue = 5 | pages = 317–27 | date = May 2010 | pmid = 20414205 | pmc = 3508064 | doi = 10.1038/nri2744 }}
20. ^{{cite journal | vauthors = Seidel UJ, Schlegel P, Lang P | title = Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies | journal = Frontiers in Immunology | volume = 4 | pages = 76 | year = 2013 | pmid = 23543707 | pmc = 3608903 | doi = 10.3389/fimmu.2013.00076 }}
21. ^{{cite journal | vauthors = Gelderman KA, Tomlinson S, Ross GD, Gorter A | title = Complement function in mAb-mediated cancer immunotherapy | journal = Trends in Immunology | volume = 25 | issue = 3 | pages = 158–64 | date = March 2004 | pmid = 15036044 | doi = 10.1016/j.it.2004.01.008 }}
22. ^{{cite journal | vauthors = Scott AM, Wolchok JD, Old LJ | title = Antibody therapy of cancer | journal = Nature Reviews. Cancer | volume = 12 | issue = 4 | pages = 278–87 | date = March 2012 | pmid = 22437872 | doi = 10.1038/nrc3236 }}
23. ^{{cite journal | vauthors = Waldmann TA | title = Immunotherapy: past, present and future | journal = Nature Medicine | volume = 9 | issue = 3 | pages = 269–77 | date = March 2003 | pmid = 12612576 | doi = 10.1038/nm0303-269 }}
24. ^{{cite journal | vauthors = Demko S, Summers J, Keegan P, Pazdur R | title = FDA drug approval summary: alemtuzumab as single-agent treatment for B-cell chronic lymphocytic leukemia | journal = The Oncologist | volume = 13 | issue = 2 | pages = 167–74 | date = February 2008 | pmid = 18305062 | doi = 10.1634/theoncologist.2007-0218 }}
25. ^{{cite news|url=http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm501762.htm|title=FDA approves new, targeted treatment for bladder cancer|date=18 May 2016|publisher=FDA|access-date=20 May 2016}}
26. ^{{Cite web|url=https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761049s000lbl.pdf|title=US Food and Drug Administration – Avelumab Prescribing Label|website=|dead-url=}}
27. ^{{cite web |last=Pazdur|first=Richard|name-list-format=vanc|title=FDA approval for Ipilimumab|url=http://www.cancer.gov/cancertopics/druginfo/fda-ipilimumab|accessdate=7 November 2013}}
28. ^{{cite journal | vauthors = Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H, McDougal A, Pilaro A, Chiang R, Gootenberg JE, Keegan P, Pazdur R | title = U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab | journal = Clinical Cancer Research | volume = 16 | issue = 17 | pages = 4331–38 | date = September 2010 | pmid = 20601446 | doi = 10.1158/1078-0432.CCR-10-0570 }}
29. ^{{cite journal | vauthors = Sharma P, Allison JP | title = The future of immune checkpoint therapy | journal = Science | volume = 348 | issue = 6230 | pages = 56–61 | date = April 2015 | pmid = 25838373 | doi = 10.1126/science.aaa8172 | bibcode = 2015Sci...348...56S }}
30. ^{{cite web|url=https://www.drugs.com/history/opdivo.html|title=Opdivo Drug Approval History}}
31. ^{{cite web|url=https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm624659.htm|title=FDA approves pembrolizumab in combination with chemotherapy for first-line treatment of metastatic squamous NSCLC}}
32. ^{{cite web|url=https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm546893.htm|title=Pembrolizumab (KEYTRUDA) for classical Hodgkin lymphoma}}
33. ^{{cite web|url=https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm628867.htm|title=FDA approves pembrolizumab for Merkel cell carcinoma}}
34. ^{{cite web|url=https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm610670.htm|title=FDA approves pembrolizumab for treatment of relapsed or refractory PMBCL}}
35. ^{{cite web|url=https://www.cancer.gov/about-cancer/treatment/drugs/pembrolizumab|title=National Cancer Institute - Pembrolizumab Use in Cancer}}
36. ^{{cite journal | vauthors = James JS, Dubs G | title = FDA approves new kind of lymphoma treatment. Food and Drug Administration | journal = AIDS Treatment News | issue = 284 | pages = 2–3 | date = December 1997 | pmid = 11364912 }}
37. ^{{Cite web| title = Approved Drugs – Durvalumab (Imfinzi) |url=https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm555930.htm|last=Research|first=Center for Drug Evaluation and|website=fda.gov|access-date=6 May 2017}}
38. ^{{Cite web|url=https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm597248.htm|title=FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC|website=|dead-url=}}
39. ^{{cite book | vauthors = Byrd JC, Stilgenbauer S, Flinn IW | doi = 10.1182/asheducation-2004.1.163 | chapter = Chronic Lymphocytic Leukemia | title = ASH Education Program Book | date = 2004 | pages = 163–183| publisher = Am Soc Hematol Educ Program }}
40. ^{{cite journal | vauthors = Domagała A, Kurpisz M | title = CD52 antigen – a review | journal = Medical Science Monitor | volume = 7 | issue = 2 | pages = 325–31 | date = Mar–Apr 2001 | pmid = 11257744 }}
41. ^{{cite journal | vauthors = Dearden C | title = How I treat prolymphocytic leukemia | journal = Blood | volume = 120 | issue = 3 | pages = 538–51 | date = July 2012 | pmid = 22649104 | doi = 10.1182/blood-2012-01-380139 }}
42. ^{{cite journal | vauthors = Sondak VK, Smalley KS, Kudchadkar R, Grippon S, Kirkpatrick P | title = Ipilimumab | journal = Nature Reviews. Drug Discovery | volume = 10 | issue = 6 | pages = 411–12 | date = June 2011 | pmid = 21629286 | doi = 10.1038/nrd3463 }}
43. ^{{cite journal | vauthors = Lipson EJ, Drake CG | title = Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma | journal = Clinical Cancer Research | volume = 17 | issue = 22 | pages = 6958–62 | date = November 2011 | pmid = 21900389 | pmc = 3575079 | doi = 10.1158/1078-0432.CCR-11-1595 }}
44. ^{{cite journal | vauthors = Thumar JR, Kluger HM | title = Ipilimumab: a promising immunotherapy for melanoma | journal = Oncology | volume = 24 | issue = 14 | pages = 1280–88 | date = December 2010 | pmid = 21294471 }}
45. ^{{cite journal | vauthors = Chambers CA, Kuhns MS, Egen JG, Allison JP | title = CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy | journal = Annual Review of Immunology | volume = 19 | pages = 565–94 | year = 2001 | pmid = 11244047 | doi = 10.1146/annurev.immunol.19.1.565 }}
46. ^{{cite journal | vauthors = Castillo J, Perez K | title = The role of ofatumumab in the treatment of chronic lymphocytic leukemia resistant to previous therapies | journal = Journal of Blood Medicine | volume = 1 | pages = 1–8 | year = 2010 | pmid = 22282677 | pmc = 3262337 | doi = 10.2147/jbm.s7284 }}
47. ^{{cite journal | vauthors = Zhang B | title = Ofatumumab | journal = MAbs | volume = 1 | issue = 4 | pages = 326–31 | date = Jul–Aug 2009 | pmid = 20068404 | pmc = 2726602 | doi = 10.4161/mabs.1.4.8895 }}
48. ^{{cite web|title=Pembrolizumab label |url=https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014lbl.pdf|publisher=FDA|date=May 2017}} linked from Index page at FDA website November 2016
49. ^{{cite web|title=Pembrolizumab label at eMC |url=https://www.medicines.org.uk/emc/medicine/30602|publisher=UK Electronic Medicines Compendium|date=27 January 2017}}
50. ^{{Cite web|url=https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125514s034lbl.pdf|title=HIGHLIGHTS OF PRESCRIBING INFORMATION - KEYTRUDA (Pembrolizumab)|last=|first=|date=June 2018|website=fda.gov|archive-url=|archive-date=|dead-url=|access-date=27 February 2019}}
51. ^{{cite journal | vauthors = Keating GM | title = Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma | journal = Drugs | volume = 70 | issue = 11 | pages = 1445–76 | date = July 2010 | pmid = 20614951 | doi = 10.2165/11201110-000000000-00000 }}
52. ^{{cite journal | vauthors = Plosker GL, Figgitt DP | title = Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia | journal = Drugs | volume = 63 | issue = 8 | pages = 803–43 | year = 2003 | pmid = 12662126 | doi = 10.2165/00003495-200363080-00005 }}
53. ^{{cite journal | vauthors = Cerny T, Borisch B, Introna M, Johnson P, Rose AL | title = Mechanism of action of rituximab | journal = Anti-Cancer Drugs | volume = 13 Suppl 2 | pages = S3–10 | date = November 2002 | pmid = 12710585 | doi = 10.1097/00001813-200211002-00002 }}
54. ^{{cite book |last=Janeway |first=Charles |authorlink=Charles Janeway |first2=Paul |last2=Travers |first3=Mark |last3=Walport |first4=Mark |last4=Shlomchik |name-list-format=vanc |title=Immunobiology | edition = Fifth |publisher=Garland Science |year=2001 |location=New York and London |pages= |url=https://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=imm.TOC&depth=10 |isbn=978-0-8153-4101-7}}{{page needed|date=February 2018}}
55. ^{{cite journal | vauthors = Weiner GJ | title = Rituximab: mechanism of action | journal = Seminars in Hematology | volume = 47 | issue = 2 | pages = 115–23 | date = April 2010 | pmid = 20350658 | pmc = 2848172 | doi = 10.1053/j.seminhematol.2010.01.011 }}
56. ^{{cite journal | vauthors = Dranoff G | title = Cytokines in cancer pathogenesis and cancer therapy | journal = Nature Reviews. Cancer | volume = 4 | issue = 1 | pages = 11–22 | date = January 2004 | pmid = 14708024 | doi = 10.1038/nrc1252 }}
57. ^{{cite journal | vauthors = Dunn GP, Koebel CM, Schreiber RD | title = Interferons, immunity and cancer immunoediting | journal = Nature Reviews. Immunology | volume = 6 | issue = 11 | pages = 836–48 | date = November 2006 | pmid = 17063185 | doi = 10.1038/nri1961 }}
58. ^{{cite journal | vauthors = Lasfar A, Abushahba W, Balan M, Cohen-Solal KA | title = Interferon lambda: a new sword in cancer immunotherapy | journal = Clinical & Developmental Immunology | volume = 2011 | pages = 349575 | year = 2011 | pmid = 22190970 | pmc = 3235441 | doi = 10.1155/2011/349575 }}
59. ^{{cite journal | vauthors = Razaghi A, Owens L, Heimann K | title = Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation | journal = Journal of Biotechnology | volume = 240 | pages = 48–60 | date = December 2016 | pmid = 27794496 | doi = 10.1016/j.jbiotec.2016.10.022 }}
60. ^{{cite journal | vauthors = Coventry BJ, Ashdown ML | title = The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses | journal = Cancer Management and Research | volume = 4 | pages = 215–21 | year = 2012 | pmid = 22904643 | pmc = 3421468 | doi = 10.2147/cmar.s33979 }}
61. ^{{cite journal | vauthors = Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD | title = Combination immunotherapy: a road map | journal = Journal for Immunotherapy of Cancer | volume = 5 | pages = 16 | year = 2017 | pmid = 28239469 | pmc = 5319100 | doi = 10.1186/s40425-017-0218-5 }}
62. ^{{cite journal | vauthors = Mahoney KM, Rennert PD, Freeman GJ | title = Combination cancer immunotherapy and new immunomodulatory targets | journal = Nature Reviews. Drug Discovery | volume = 14 | issue = 8 | pages = 561–84 | date = August 2015 | pmid = 26228759 | doi = 10.1038/nrd4591 }}
63. ^{{Cite journal |title=Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response?|year=2015|url=https://www.hindawi.com/journals/grp/2016/9251375/}}
64. ^{{cite journal | vauthors = Tang J, Shalabi A, Hubbard-Lucey VM | title = Comprehensive analysis of the clinical immuno-oncology landscape | journal = Annals of Oncology | volume = 29 | issue = 1 | pages = 84–91 | date = January 2018 | pmid = 29228097 | doi = 10.1093/annonc/mdx755 }}
65. ^{{cite journal | vauthors = Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, Sher JW, Bosenberg M, Miller-Jensen K, Kaech SM | title = Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity | journal = The Journal of Experimental Medicine | volume = 215 | issue = 3 | pages = 877–93 | date = March 2018 | pmid = 29436395 | doi = 10.1084/jem.20171435 }}
66. ^{{cite journal| vauthors = Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R |date=21 May 2018|title=TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy |journal=Nature Biomedical Engineering |doi=10.1038/s41551-018-0236-8 }}
67. ^{{cite web |archive-url=https://web.archive.org/web/20060215064239/http://www.cancer.org/docroot/ETO/content/ETO_5_3X_Coriolous_Versicolor.asp|url=http://www.cancer.org/docroot/ETO/content/ETO_5_3X_Coriolous_Versicolor.asp|archive-date=15 February 2006|dead-url=yes|title=Coriolus Versicolor|publisher=American Cancer Society|df=}}
68. ^{{cite web|url=http://www.cancergenetics.com/cancer-genetics-offers-the-fda-approved-dako-pd-l1-ihc-22c3-pharmdx-companion-diagnostic-test-for-keytruda/|title=Cancer Genetics offers the FDA-approved DAKO PD-L1 IHC 22C3 pharmDx companion diagnostic test for KEYTRUDA®|date=3 February 2016|publisher=}}
69. ^{{cite journal | vauthors = Udall M, Rizzo M, Kenny J, Doherty J, Dahm S, Robbins P, Faulkner E | title = PD-L1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics | journal = Diagnostic Pathology | volume = 13 | issue = 1 | pages = 12 | date = February 2018 | pmid = 29426340 | pmc = 5807740 | doi = 10.1186/s13000-018-0689-9 }}
70. ^{{cite journal | vauthors = Dacic S | title = Time is up for PD-L1 testing standardization in lung cancer | journal = Annals of Oncology | volume = 29 | issue = 4 | pages = 791–792 | date = April 2018 | pmid = 29688334 | doi = 10.1093/annonc/mdy069 }}
71. ^{{cite journal | vauthors = Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R | title = Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers | journal = Molecular Cancer Therapeutics | volume = 16 | issue = 11 | pages = 2598–2608 | date = November 2017 | pmid = 28835386 | pmc = 5670009 | doi = 10.1158/1535-7163.MCT-17-0386 }}
72. ^{{cite web | url = http://www.ascopost.com/News/59015 | title = FDA Accepts sBLA for First-Line Nivolumab Plus Low-Dose Ipilimumab in NSCLC With Tumor Mutational Burden ≥ 10 mut/mb | date = 7 February 2018 | publisher = American Society of Clinical Oncology | work = ASCO Post }}
73. ^{{cite web | url = https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm611981.htm | title = FDA approves Encorafenib and Binimetinib in combination for unresectable or metastatic melanoma with BRAF mutations | date = 27 June 2018 | publisher = U.S. Food and Drug Administration }}
74. ^[https://www.forbes.com/sites/fayeflam/2015/01/22/investigator-offers-lessons-from-precision-medicines-cancer-scandal/ Duke U Cancer Fraud Scandal: A Cautionary Tale For Obama's Precision Medicine Push], Faye Flam, 17 February 2015 (Forbes website)
75. ^[https://sciencebasedmedicine.org/liquid-biopsies-for-cancer-life-saving-tests-or-overdiagnosis-and-overtreatment-taken-to-a-new-level/ “Liquid biopsies” for cancer screening: Life-saving tests, or overdiagnosis and overtreatment taken to a new level?] David Gorski, September 2015, Science-Based Medicine website
76. ^[https://www.melanoma.org/find-support/patient-community/mpip-melanoma-patients-information-page/insurance-wont-pay-braf-test A public discussion by cancer patients] from 2011 on the melanoma.org website shows costs and claims.
77. ^{{cite journal | vauthors = Restifo NP, Dudley ME, Rosenberg SA | title = Adoptive immunotherapy for cancer: harnessing the T cell response | journal = Nature Reviews. Immunology | volume = 12 | issue = 4 | pages = 269–81 | date = March 2012 | pmid = 22437939 | doi = 10.1038/nri3191 }}
78. ^{{cite web |first=John|last=Carroll|name-list-format=vanc|work=Fierce Biotech|date=December 2013|url=http://www.fiercebiotech.com/story/novartispenns-customized-t-cell-wows-ash-stellar-leukemia-data/2013-12-09|title=Novartis/Penn's customized T cell wows ASH with stellar leukemia data}}
79. ^{{cite web |first=John|last=Carroll|work=FierceBiotech|date=February 2014|url=http://www.fiercebiotech.com/story/servier-stages-entry-high-stakes-car-t-showdown-novartis/2014-02-18|title=Servier stages an entry into high-stakes CAR-T showdown with Novartis}}
80. ^{{cite web | title = Biotech's Coming Cancer Cure: Supercharge your immune cells to defeat cancer? Juno Therapeutics believes its treatments can do exactly that| url=http://www.technologyreview.com/featuredstory/538441/biotechs-coming-cancer-cure/|first=Antonio|last=Regalado|name-list-format=vanc|date=June 2015|work=MIT Technology Review}}
81. ^{{cite web|url=http://www.cancer.gov/cancertopics/research-updates/2013/CAR-T-Cells|title=CAR T-Cell Therapy: Engineering Patients’ Immune Cells to Treat Their Cancers|publisher=cancer.gov|date=6 December 2013|accessdate=9 May 2014}}
82. ^{{cite web|url=http://www.nih.gov/news/health/may2014/nci-08.htm|title=NIH study demonstrates that a new cancer immunotherapy method could be effective against a wide range of cancers|publisher=nih.gov|date=8 May 2014|accessdate=9 May 2014}}
83. ^{{cite journal |vauthors=Andersen R, Borch TH, Draghi A, Gokuldass A, Rana MA, Pedersen M, Nielsen M, Kongsted P, Kjeldsen JW, Westergaard MC, Radic HD, Chamberlain CA, Holmich LR, Hendel HW, Larsen MS, Met O, Svane IM, Donia M | title = T cells isolated from patients with checkpoint inhibitor resistant-melanoma are functional and can mediate tumor regression. | journal = Ann. Oncol. | date=April 2018 | pmid = 29688262 | doi = 10.1093/annonc/mdy139 }}
84. ^{{cite web|url=https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm|title=FDA approval brings first gene therapy to the United States|publisher=fda.gov|date=30 August 2017|accessdate=8 November 2017}}
85. ^{{cite journal | vauthors = Wilhelm M, Smetak M, Schaefer-Eckart K, Kimmel B, Birkmann J, Einsele H, Kunzmann V | title = Successful adoptive transfer and in vivo expansion of haploidentical γδ T cells | journal = Journal of Translational Medicine | volume = 12 | pages = 45 | date = February 2014 | pmid = 24528541 | pmc = 3926263 | doi = 10.1186/1479-5876-12-45 }}
86. ^{{cite journal | vauthors = Jaiswal S, Chao MP, Majeti R, Weissman IL | title = Macrophages as mediators of tumor immunosurveillance | journal = Trends in Immunology | volume = 31 | issue = 6 | pages = 212–19 | date = June 2010 | pmid = 20452821 | doi = 10.1016/j.it.2010.04.001 | pmc = 3646798 }}
87. ^{{cite journal | vauthors = Weiskopf K | title = Cancer immunotherapy targeting the CD47/SIRPα axis | journal = European Journal of Cancer | volume = 76 | pages = 100–09 | date = May 2017 | pmid = 28286286 | doi = 10.1016/j.ejca.2017.02.013 }}
88. ^{{cite journal | vauthors = Matlung HL, Szilagyi K, Barclay NA, van den Berg TK | title = The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer | journal = Immunological Reviews | volume = 276 | issue = 1 | pages = 145–64 | date = March 2017 | pmid = 28258703 | doi = 10.1111/imr.12527 }}
89. ^{{cite journal | vauthors = Veillette A, Chen J | title = SIRPα-CD47 Immune Checkpoint Blockade in Anticancer Therapy | journal = Trends in Immunology | volume = 39 | issue = 3 | pages = 173–84 | date = March 2018 | pmid = 29336991 | doi = 10.1016/j.it.2017.12.005 }}
90. ^{{cite journal | vauthors = Ahmed M, Cheung NK | title = Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy | journal = FEBS Letters | volume = 588 | issue = 2 | pages = 288–97 | date = January 2014 | pmid = 24295643 | doi = 10.1016/j.febslet.2013.11.030 }}
91. ^{{cite journal | vauthors = Pardoll DM | title = The blockade of immune checkpoints in cancer immunotherapy | journal = Nature Reviews. Cancer | volume = 12 | issue = 4 | pages = 252–64 | date = March 2012 | pmid = 22437870 | pmc = 4856023 | doi = 10.1038/nrc3239 }}
92. ^{{cite journal | vauthors = Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E | title = Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer | journal = ESMO Open | volume = 2 | issue = 2 | pages = e000213 |year = 2017 | pmid = 28761757 | pmc = 5518304 | doi = 10.1136/esmoopen-2017-000213 }}
93. ^{{cite journal | vauthors = Cameron F, Whiteside G, Perry C | title = Ipilimumab: first global approval | journal = Drugs | volume = 71 | issue = 8 | pages = 1093–104 | date = May 2011 | pmid = 21668044 | doi = 10.2165/11594010-000000000-00000 }}
94. ^{{cite journal | vauthors = Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM, Reck M | title = Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study | journal = Journal of Clinical Oncology | volume = 30 | issue = 17 | pages = 2046–54 | date = June 2012 | pmid = 22547592 | doi = 10.1200/JCO.2011.38.4032 }}
95. ^{{cite journal | vauthors = Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA, Donehower RC, Jaffee EM, Laheru DA | title = Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer | journal = Journal of Immunotherapy | volume = 36 | issue = 7 | pages = 382–89 | date = September 2013 | pmid = 23924790 | pmc = 3779664 | doi = 10.1097/CJI.0b013e31829fb7a2 }}
96. ^{{ClinicalTrialsGov|NCT01928394|A Study of Nivolumab by Itself or Nivolumab Combined With Ipilimumab in Patients With Advanced or Metastatic Solid Tumors}}
97. ^{{cite journal | vauthors = Postow MA, Callahan MK, Wolchok JD | title = Immune Checkpoint Blockade in Cancer Therapy | journal = Journal of Clinical Oncology | volume = 33 | issue = 17 | pages = 1974–82 | date = June 2015 | pmid = 25605845 | pmc = 4980573 | doi = 10.1200/JCO.2014.59.4358 }}
98. ^{{cite journal | vauthors = van Hooren L, Sandin LC, Moskalev I, Ellmark P, Dimberg A, Black P, Tötterman TH, Mangsbo SM | title = Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer | journal = European Journal of Immunology | volume = 47 | issue = 2 | pages = 385–93 | date = February 2017 | pmid = 27873300 | doi = 10.1002/eji.201646583 }}
99. ^{{Cite news|url=https://www.nytimes.com/2016/05/19/business/food-and-drug-administration-immunotherapy-bladder-cancer.html|title=F.D.A. Approves an Immunotherapy Drug for Bladder Cancer|access-date=21 May 2016|last=Pollack|first=Andrew|name-list-format=vanc|date=18 May 2016|newspaper=The New York Times|issn=0362-4331}}
100. ^{{Cite news|url=https://www.wsj.com/articles/bristol-myers-opdivo-failed-to-meet-endpoint-in-key-lung-cancer-study-1470400926|title=Bristol Myers: Opdivo Failed to Meet Endpoint in Key Lung-Cancer Study|last=Steele|first=Anne|name-list-format=vanc|date=5 August 2016|newspaper=The Wall Street Journal|issn=0099-9660|access-date=5 August 2016}}
101. ^{{cite web|url=https://globenewswire.com/news-release/2016/06/05/846118/0/en/BeiGene-Presents-Initial-Clinical-Data-on-PD-1-Antibody-BGB-A317-at-the-2016-American-Society-of-Clinical-Oncology-Annual-Meeting.html|title=BeiGene Presents Initial Clinical Data on PD-1 Antibody BGB-A317 at the 2016 American Society of Clinical Oncology Annual Meeting|author=BeiGene, Ltd.|publisher=Globe Newswire}}
102. ^{{cite web|url=http://www.roche.com/investors/updates/inv-update-2016-04-11.htm|title=FDA grants priority review for Roche's cancer immunotherapy atezolizumab in specific type of lung cancer|last1=Roche}}
103. ^{{cite web|last1=Merck Group|title=Immuno-oncology Avelumab|url=http://www.merckgroup.com/en/innovation/research_activities/immuno_oncology/immuno_oncology.html}}
104. ^{{cite web|last1=Cure today|title=Durvalumab continues to progress in treatment of advanced bladder cancer.|url=http://www.curetoday.com/articles/durvalumab-continues-to-progress-in-treatment-of-advanced-bladder-cancer}}
105. ^{{cite web|last1=Avacta Life Sciences|title=Affimer biotherapeutics target cancer's off-switch with PD-L1 inhibitor|url=https://www.avactalifesciences.com/blogs/affimer-biotherapeutics-target-cancer-s-switch-pd-l1-inhibitor}}
106. ^{{cite journal | vauthors = Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, Lin YJ, Wojtkiewicz G, Iwamoto Y, Mino-Kenudson M, Huynh TG, Hynes RO, Freeman GJ, Kroemer G, Zitvogel L, Weissleder R, Pittet MJ | display-authors = 6 | title = Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy | journal = Immunity | volume = 44 | issue = 2 | pages = 343–54 | date = February 2016 | pmid = 26872698 | doi = 10.1016/j.immuni.2015.11.024 | pmc = 4758865 }}
107. ^{{cite journal | vauthors = Fukuhara H, Ino Y, Todo T | title = Oncolytic virus therapy: A new era of cancer treatment at dawn | journal = Cancer Science | volume = 107 | issue = 10 | pages = 1373–79 | date = October 2016 | pmid = 27486853 | pmc = 5084676 | doi = 10.1111/cas.13027 }}
108. ^{{cite journal | vauthors = Haddad D | title = Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery | journal = Frontiers in Oncology | volume = 7 | pages = 96 | year = 2017 | pmid = 28589082 | pmc = 5440573 | doi = 10.3389/fonc.2017.00096 }}
109. ^{{cite journal | vauthors = Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y | title = Cancer immunotherapy beyond immune checkpoint inhibitors | journal = Journal of Hematology & Oncology | volume = 11 | issue = 1 | pages = 8 | date = January 2018 | pmid = 29329556 | pmc = 5767051 | doi = 10.1186/s13045-017-0552-6 }}
110. ^{{cite journal | vauthors = Aleem E | title = β-Glucans and their applications in cancer therapy: focus on human studies | journal = Anti-Cancer Agents in Medicinal Chemistry | volume = 13 | issue = 5 | pages = 709–19 | date = June 2013 | pmid = 23140353 | doi = 10.2174/1871520611313050007 }}
111. ^{{cite journal | vauthors = Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA | title = Genetic basis for clinical response to CTLA-4 blockade in melanoma | journal = The New England Journal of Medicine | volume = 371 | issue = 23 | pages = 2189–99 | date = December 2014 | pmid = 25409260 | pmc = 4315319 | doi = 10.1056/NEJMoa1406498 }}
112. ^{{cite journal | vauthors = Schumacher TN, Schreiber RD | title = Neoantigens in cancer immunotherapy | journal = Science | volume = 348 | issue = 6230 | pages = 69–74 | date = April 2015 | pmid = 25838375 | doi = 10.1126/science.aaa4971 | bibcode = 2015Sci...348...69S }}

External links

  • [https://www.cancer.gov/about-cancer/treatment/types/immunotherapy An easy to understand primer on "Immunotherapy to Treat Cancer"]
  • [https://www.cancer.gov/research/areas/treatment/immunotherapy-using-immune-system Immunotherapy – Using the Immune System to Treat Cancer]
  • Cancer Research Institute – What is Cancer Immunotherapy
  • Association for Immunotherapy of Cancer
    • Society for Immunotherapy of Cancer
    • {{cite news |url=https://www.economist.com/news/science-and-technology/21653602-doctors-are-tryingwith-some-successto-recruit-immune-system-help|title=And Then There Were Five|work=Economist}}
    • {{cite web |url=http://www.immunooncology.com/home.aspx|title=Discover the Science of Immuno-Oncology|publisher=Bristol-Myers Squibb|accessdate=13 March 2014}}
    • {{cite journal |vauthors=Eggermont A, Finn O|publisher=Oxford University Press|url=http://annonc.oxfordjournals.org/content/23/suppl_8/viii5.full|title=Advances in immuno-oncology|accessdate=13 March 2014}}
    • {{cite web |url=http://www.merckserono.com/en/research_development/therapeutic_focus/immuno_oncology/immuno_oncology.html;jsessionid=B776F4E8CCC023654F278E890F95B80D|title=Immuno-Oncology: Investigating Cancer Therapies Powered by the Immune System|publisher=Merck Serono|accessdate=13 March 2014}}
    • {{cite journal |vauthors=Calmeiro J, Carrascal M, Gomes C, Falcão A, Cruz MT, Neves BM |publisher=IntechOpen|url=https://www.intechopen.com/books/dendritic-cells/highlighting-the-role-of-dc-nk-cell-interplay-in-immunobiology-and-immunotherapy|title=Highlighting the Role of DC-NK Cell Interplay in Immunobiology and Immunotherapy=November 5, 2018}}
    {{Tumors}}{{Chemotherapeutic agents}}{{Breakthrough of the Year}}

    2 : Monoclonal antibodies for tumors|Branches of immunology

    随便看

     

    开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

     

    Copyright © 2023 OENC.NET All Rights Reserved
    京ICP备2021023879号 更新时间:2024/11/11 4:02:06