词条 | Dickman function | ||||||||||||||||||||||
释义 |
In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound. It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication,[1] and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.[2][3] DefinitionThe Dickman–de Bruijn function is a continuous function that satisfies the delay differential equation with initial conditions for 0 ≤ u ≤ 1. Dickman proved that, when is fixed, we have where is the number of y-smooth (or y-friable) integers below x. Ramaswami later gave a rigorous proof that for fixed a, was asymptotic to , with the error bound in big O notation.[4] ApplicationsThe main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms, and can be useful of its own right. It can be shown using that[5] which is related to the estimate below. The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function. EstimationA first approximation might be A better estimate is[6] where Ei is the exponential integral and ξ is the positive root of A simple upper bound is
ComputationFor each interval [n − 1, n] with n an integer, there is an analytic function such that . For 0 ≤ u ≤ 1, . For 1 ≤ u ≤ 2, . For 2 ≤ u ≤ 3, with Li2 the dilogarithm. Other can be calculated using infinite series.[6] An alternate method is computing lower and upper bounds with the trapezoidal rule;[7] a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.[8] ExtensionFriedlander defines a two-dimensional analog of .[9] This function is used to estimate a function similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then See also
References1. ^{{cite journal |first=K. |last=Dickman |title=On the frequency of numbers containing prime factors of a certain relative magnitude |journal=Arkiv för Matematik, Astronomi och Fysik |volume=22A |issue=10 |year=1930 |pages=1–14 }} 2. ^{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597499.pdf |title=On the number of positive integers ≤ x and free of prime factors > y |journal=Indagationes Mathematicae |volume=13 |year=1951 |pages=50–60 }} 3. ^{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597534.pdf |title=On the number of positive integers ≤ x and free of prime factors > y, II |journal=Indagationes Mathematicae |volume=28 |issue= |year=1966 |pages=239–247 }} 4. ^{{cite journal |first=V. |last=Ramaswami |url=http://www.ams.org/bull/1949-55-12/S0002-9904-1949-09337-0/S0002-9904-1949-09337-0.pdf |title=On the number of positive integers less than and free of prime divisors greater than xc |journal=Bulletin of the American Mathematical Society |volume=55 |issue=12 |year=1949 |pages=1122–1127 |doi= 10.1090/s0002-9904-1949-09337-0 | mr=0031958}} 5. ^{{cite journal |first=A. |last=Hildebrand |first2=G. |last2=Tenenbaum |url=http://archive.numdam.org/article/JTNB_1993__5_2_411_0.pdf |title=Integers without large prime factors |journal=Journal de théorie des nombres de Bordeaux |volume=5 |issue=2 |year=1993 |pages=411–484 |doi=10.5802/jtnb.101}} 6. ^{{cite journal |first=Eric |last=Bach |first2=René |last2=Peralta |url=http://cr.yp.to/bib/1996/bach-semismooth.pdf |title=Asymptotic Semismoothness Probabilities |journal=Mathematics of Computation |volume=65 |issue=216 |pages=1701–1715 |year=1996 |doi=10.1090/S0025-5718-96-00775-2 }} 7. ^1 {{cite journal |first=J. |last=van de Lune |first2=E. |last2=Wattel |title=On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory |journal=Mathematics of Computation |volume=23 |issue=106 |year=1969 |pages=417–421 |doi=10.1090/S0025-5718-1969-0247789-3 }} 8. ^{{cite journal |first=George |last=Marsaglia |first2=Arif |last2=Zaman |first3=John C. W. |last3=Marsaglia |title=Numerical Solution of Some Classical Differential-Difference Equations |journal=Mathematics of Computation |volume=53 |issue=187 |year=1989 |pages=191–201 |jstor= |doi=10.1090/S0025-5718-1989-0969490-3 }} 9. ^{{cite journal |first=John B. |last=Friedlander |url=http://plms.oxfordjournals.org/content/s3-33/3/565 |title=Integers free from large and small primes |journal=Proc. London Math. Soc. |volume=33 |issue=3 |pages=565–576 |year=1976 |doi=10.1112/plms/s3-33.3.565 }} Further reading
|first1=David |last1=Broadhurst |title=Dickman polylogarithms and their constants |eprint=1004.0519 |year=2010 |class=math-ph }}
|first1=Kannan |last1=Soundararajan |title=An asymptotic expansion related to the Dickman function |arxiv=1005.3494 |year=2012 |journal=Ramanujan Journal |volume=29 |issue=1–3 |doi=10.1007/s11139-011-9304-3 |mr=2994087 |pages=25–30 }}
2 : Analytic number theory|Special functions |
||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。