词条 | Dilbit |
释义 |
Reasons for dilutionBitumen and heavy oils are often produced from remote deposits such as the Athabasca oil sands in Alberta, Canada and the Orinoco tar sands in Venezuela. Before 1980, most produced bitumen was transported by truck, but trucking is seasonally restricted and relatively inefficient and expensive compared to pipeline transport. However, bitumen in its undiluted state is too viscous and dense to be transported by pipeline. To create a fluid capable of transportation by pipeline, bitumen must be mixed with a fluid that has much lower viscosity and will keep bitumen from precipitating out of the mixture. By 1985 Alberta Energy Company was operating dual pipelines to transport diluent from Edmonton to Cold Lake and dilbit from Cold Lake to Edmonton.[3] Dilbit is now also transported by rail.[4] Methods of dilutionThe most common diluent used to dilute bitumen is natural gas condensate (NGC), especially the naphtha component.[5] Due to insufficient quantity of natural gas condensate in Alberta, bitumen shippers also use refined naptha and synthetic crude oil (SCO) as diluent, and import a considerable amount from the U.S.[6] Although SCO requires a higher volume percentage to achieve the same viscosity, at least one study found that SCO provides better blend stability than NGC.[7] Shippers dilute bitumen before shipment in order to meet viscosity and density requirements found in common carrier pipeline tariff rules. A National Energy Board study assumed a standard dilbit containing 33% condensate (resulting in product with "21.5 °API and sulphur content of 3.3 percent") and synbit containing 50% SCO.[8][9][10][11] By selecting different diluent types and blend ratios, bitumen shippers attempt to lower component costs, increase blend value, and maintain pipeline transportability. The blend ratio may consist of 25 to 55% diluent by volume, depending on characteristics of the bitumen and diluent, pipeline specifications, operating conditions, and refinery requirements.[3] Froth treatment which removes heavy constituents rather than adding lighter ones is another method.[12]Refinement processDiluent can be removed from dilbit by distillation and reused. Alternatively, the entire dilbit can be refined. Dilbit and synbit are typically processed by refineries as heavy or medium crudes, respectively.[8] As dilbit contains hydrocarbons at extreme ends of the viscosity range, the material can be more difficult to process than typical crude oil.[13] Risks and failuresEnbridge pipeline dilbit spillThe Kalamazoo River oil spill was a major spill from a ruptured Enbridge dilbit pipeline in 2010.[14] Cleanup took five years. The EPA ordered Enbridge to dredge the heavy bitumen out of hundreds of acres of Talmadge Creek and the Kalamazoo River. Separation and oil spill risksUnlike conventional crude, unstabilized dilbit floats briefly in water but heavier components sink as light components evaporate. The remaining bitumen can make cleaning up a dilbit spill more difficult than a conventional oil spill, particularly if dredging is considered too ecologically damaging.[15] During the 2010 Kalamazoo River oil spill, the heavier components combined with silt and sank to the bottom of the water column, making cleanup difficult.[16] Cleanup of the spill was still underway three years after the event, and officials at the Michigan Department of Natural Resources' Fishery Division stated that it will "be many more years before the agency can measure the full impact on fish and other animals' reproductive cycles."[17] However, studies show that dilbit does not increase the risk of corrosion occurring within a pipeline or otherwise increase the risk of a release occurring.[18][19][20][21] In 2013, opening on the Keystone XL pipeline proposal, the EPA recommended to the State Department that pipelines that carry dilbit (such as the proposed Keystone XL) should no longer be treated just like pipelines that carry any other oil. "We have learned from the 2010 Enbridge spill of oil sands crude in Michigan that spills of diluted bitumen (dilbit) may require different response actions or equipment from response actions for conventional oil spills. These spills can also have different impacts than spills of conventional oil. ... We recommend that the Final EIS more clearly acknowledge that in the event of a spill to water, it is possible that large portions of dilbit will sink and that submerged oil significantly changes spill response and impacts. We also recommend that the Final EIS include means to address the additional risks of releases that may be greater for spills of dilbit than other crudes. For example, in the Enbridge spill, the local health department issued voluntary evacuation notices based on the level of benzene measured in the air."[22] Alternatives to diluent
See also
References1. ^{{Citation | title = Alberta Oil Sands Bitumen Valuation Methodology | place = Calgary, Alberta | publisher = Canadian Association of Petroleum Producers | volume = 2008-9995 |date=Dec 2008 | url=http://www.capp.ca/getdoc.aspx?DocId=144465&DT=NTV | format=pdf }} 2. ^{{cite book |title=Canada's Oil Sands: Opportunities and Challenges to 2015 |url=http://www.neb.gc.ca/clf-nsi/rnrgynfmtn/nrgyrprt/lsnd/pprtntsndchllngs20152004/pprtntsndchllngs20152004-eng.pdf |accessdate=14 Mar 2012 |type=Energy Market Assessment |date=May 2004 |publisher=National Energy Board |location=Calgary, Alberta |isbn=0-662-36880-0 |page= |pages=115–118 |quote=}} Condensate: "A mixture {{sic|comprised |hide=y|mainly of}} pentanes and heavier hydrocarbons recovered as a liquid from field separators, scrubbers or other gathering facilities or at the inlet of a natural gas processing plant before the gas is processed." Dilbit: "Bitumen that has been reduced in viscosity through addition of a diluent (or solvent) such as condensate or naphtha." Diluent: "Any lighter hydrocarbon, usually pentanes plus, added to heavy crude oil or bitumen in order to facilitate its transport on crude oil pipelines." Synbit: "A blend of bitumen and synthetic crude oil that has similar properties to medium sour crude." "Synthetic crude oil is a mixture of hydrocarbons generally similarto light sweet crude oil, derived by upgrading crude bitumen or heavy crude oil." 3. ^1 {{Citation|last=Walker |first=Ian C. |title=Marketing Challenges for Canadian Bitumen |place=Tulsa, OK |publisher=International Centre for Heavy Hydrocarbons |year=1998 |url=http://www.oildrop.org/Info/Centre/Lib/7thConf/19980101.pdf |archive-url=https://web.archive.org/web/20120313084908/http://www.oildrop.org/Info/Centre/Lib/7thConf/19980101.pdf |dead-url=yes |archive-date=2012-03-13 |format=pdf |page=2 }} 4. ^{{cite news|title=Riding the Rails, Oil companies climb aboard potential alternative to pipelines |first=Lynda |last=Harrison |url=http://www.oilandgasinquirer.com/printer.asp?article=magazine%2F110912%2FMAG2011_SC0000.html |archive-url=https://archive.is/20120911094002/http://www.oilandgasinquirer.com/printer.asp?article=magazine/110912/MAG2011_SC0000.html |dead-url=yes |archive-date=2012-09-11 |agency= |newspaper=Oil & Gas Inquirer |publisher=JuneWarren-Nickle's Energy Group |location=Calgary, Alberta |date=September 2011 |accessdate=14 Mar 2012 |quote= }} 5. ^{{cite web |url=http://altex-energy.com/our_model.html |title=Altex model |publisher=Altex Energy Ltd. |accessdate=June 16, 2012 |quote=On December 2, 2009, Purvin and Gertz reported that Alberta produces about 80,000 bbls/d of natural gasoline (primarily pentane and hexane) and another 65,000 bbls/d of Naphtha from its indigenous natural gas. These hydrocarbons have been added to bitumen (typically a 10–12 API product) to produce a pipelinable product called dilbit (19–21 API). In recent years the indigenous supply of natural gasoline not been sufficient to meet the demand. To meet bitumen producer’s requirements, about 40,000 bbls/d of natural gasoline has been imported into Alberta, primarily using rail road tank cars. The National Energy Board (“NEB”) tracks these volumes and in a recent publication shows that it expects the demand for natural gasoline to grow by about 27,000 bpd each year for the next ten years. |deadurl=yes |archiveurl=https://web.archive.org/web/20120420050531/http://www.altex-energy.com/our_model.html |archivedate=April 20, 2012 |df= }} 6. ^{{cite news |title=New Diluent Sources Needed For Forecast Growth In Bitumen |first=Elsie |last=Ross |newspaper=The Daily Oil Bulletin |publisher=Junewarren-Nickle’s Energy Group |date=13 Sep 2012 |quote=Oilsands operators have been importing diluent since about 2004 as the required volumes of pentanes plus and condensate have significantly outpaced domestic production capacity, says the CERI study. In 2010, an estimated 260,000 bbls per day of diluent was required while total Canadian domestic production was about 160,000 bbls per day, indicating that close to 40 per cent (100,000 bbls per day) of the required diluent needed to be imported, says the study.}} 7. ^{{Cite conference | first = Parviz | last = Rahimi | first2=Teclemariam | last2=Alem | title = Crude Oil Compatibility and Diluent Evaluation for Pipelining | conference=Joint CCQTA/COQA meeting (New Orleans) | publisher = National Centre for Upgrading Technology | date = 10 Feb 2010 | location = Devon, Alberta | format=pdf | url = http://geoscan.ess.nrcan.gc.ca/text/geoscan/fulltext/NCUT2009_Paper28.pdf | accessdate = 18 Jun 2011 }} 8. ^1 {{cite book |title=Canada's Oil Sands: Opportunities and Challenges to 2015 |url=http://www.neb.gc.ca/clf-nsi/rnrgynfmtn/nrgyrprt/lsnd/pprtntsndchllngs20152004/pprtntsndchllngs20152004-eng.pdf |accessdate=14 Mar 2012 |type=Energy Market Assessment |date=May 2004 |publisher=National Energy Board |location=Calgary, Alberta |isbn=0-662-36880-0 |page= |pages= |quote=}} 9. ^{{Citation|last= |first= |date=June 2007 |title=Crude Oil Forecast, Markets and Pipeline Expansions |publisher=Canadian Association of Petroleum Producers |publication-place=Calgary, Alberta |page=5 |format=PDF |url=http://tothetarsands.ca/wp-content/uploads/2007/08/capp-2007-forecast.pdf |accessdate=16 June 2012 |quote=The DilBit blend is typically made up of three parts bitumen and one part condensate. SynBit blend is {{sic|comprised |hide=y|of}} roughly fifty percent synthetic and fifty percent bitumen. |deadurl=yes |archiveurl=https://web.archive.org/web/20150416162159/http://tothetarsands.ca/wp-content/uploads/2007/08/capp-2007-forecast.pdf |archivedate=16 April 2015 |df= }} 10. ^{{Citation |last=Segato |first=Randy |year= |title=Quality Guidelines for Western Canadian Condensate |publisher=Canadian Association of Petroleum Producers |publication-place=Calgary, Alberta |page=6 |url=http://www.coqa-inc.org/Segato0608.pdf | format=PDF |accessdate=16 June 2012 | quote=Bitumen and Heavy Crude Oil must be diluted to meet pipeline viscosity and density specifications. Two blend type conventions •upgraded light synthetic blends (SYNBIT, ~50/50 ratio) or •heavy and bitumen diluted with condensate (DILBIT, ~25/75 ratio) }} 11. ^{{Citation |last=Crandall |first=G. R. | others=R. A. McKetta, G. A. Houlton, J. D. Wright, O. Malbec | date=17 Dec 2004 |title=Phase II―Refined Products and Petrochemicals from Bitumen |publisher=Purvin & Gertz, Inc. |publication-place= |page=52 |url=http://www.energy.alberta.ca/EnergyProcessing/pdfs/PhaseII_Report.pdf|format=PDF |accessdate=16 June 2012 | quote=We assumed that the bitumen delivered to the Alberta upgrader would be diluted with C5+ condensate with a blend ratio of 26% C5+ and 74% bitumen needed to achieve the pipeline viscosity specification of 350 cst and 940 kg/m3 density.}} Athabasca bitumen has a density of 8.4 API and 4.8 weight % sulfur. SCO has a density of 35 API and 0.1 weight % sulfur. 12. ^{{cite news|title=SNC-Lavalin to build $650 million froth treatment plant: Client not disclosed, but reported to be CNRL|url=http://www.albertaoilmagazine.com/2011/11/snc-lavalin-to-build-650-froth-treatment-plant/|accessdate=April 28, 2013|newspaper=Alberta Oil|date=November 8, 2011|author=Jeff Lewis}} 13. ^{{Citation|last=Turnini |first=Kevin |last2=Turner |first2=James |last3=Chu |first3=Arthur |last4=Vaidyanathan |first4=Shankar |year=2011 |title=Processing Heavy Crudes in Existing Refineries |work=AIChE Spring Meeting |publisher=American Institute of Chemical Engineers |publication-place=Chicago, IL |page=3 |url=http://www.aiche-fpd.org/listing/112.pdf |accessdate=8 Mar 2014 |format=PDF |quote=Dilbit crudes are sometimes call 'dumbbell' crudes, since if one plots the volume of each cut, the naphtha/light kero range and resid range are high, whereas the kerosene and diesel range are low. In the Crude/Vac unit, dumbbell crudes stress the reside and naphtha processing areas of the unit. }}{{dead link|date=December 2016 |bot=InternetArchiveBot |fix-attempted=yes }} 14. ^{{Cite web|url=http://insideclimatenews.org/content/dilbit-disaster-inside-biggest-oil-spill-youve-never-heard|title=The Dilbit Disaster: Inside The Biggest Oil Spill You've Never Heard Of|date=2015-11-19|website=InsideClimate News|language=en-US|access-date=2019-01-26}} 15. ^"Kalamazoo River Spill Yields Record Fine", Living on Earth, July 6, 2012. Lisa Song, a reporter for InsideClimate News, interviewed by Bruce Gellerman. Retrieved 2013-01-01. 16. ^{{cite news|title=When This Oil Spills, It's 'A Whole New Monster'|url=https://www.npr.org/2012/08/16/158025375/when-this-oil-spills-its-a-whole-new-monster|accessdate=June 1, 2013|newspaper=NPR All Things Considered|date=August 16, 2012|author=Elizabeth Shogren|quote=Tar sands oil has to be diluted to make it liquid enough to flow through a pipeline. But once it's back out in the environment, the chemicals that liquefied it evaporate. That leaves the heavy stuff behind.}} 17. ^{{cite news|last=Smith|first=Lindsey|title=3 years and nearly $1 billion later, cleanup of Kalamazoo River oil spill continues|url=http://michiganradio.org/post/3-years-and-nearly-1-billion-later-cleanup-kalamazoo-river-oil-spill-continues|accessdate=15 September 2013|newspaper=Michigan Radio: The Environment Report|date=July 25, 2013}} 18. ^{{Citation | author = National Research Council | year = 2013 | title = TRB Special Report 311: Effects of Diluted Bitumen on Crude Oil Transmission Pipelines | publisher = The National Academies Press | place = Washington, DC | page = 2 | isbn = 9780309286756 | url = http://www.transmountain.com/uploads/papers/1372192779-18381.pdf | layurl = http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=18381 | laysource = Transporting Diluted Bitumen Through Pipelines Does Not Increase Likelihood of Release, New Report Says | laydate = 25 Jun 2013 | accessdate = 8 Mar 2014 | format = PDF | quote = The committee does not find any causes of pipeline failure unique to the transportation of diluted bitumen. Furthermore, the committee does not find evidence of chemical or physical properties of diluted bitumen that are outside the range of other crude oils or any other aspect of its transportation by transmission pipeline that would make diluted bitumen more likely than other crude oils to cause releases. | archive-url = https://web.archive.org/web/20140308182404/http://www.transmountain.com/uploads/papers/1372192779-18381.pdf | archive-date = 2014-03-08 | dead-url = yes | df = }} 19. ^ {{Citation |last=Been |first=Jenny |date=Sep 2011 |title=Comparison of the Corrosivity of Dilbit and Conventional Crude |publisher=Alberta Innovates Energy and Environmental Solutions |place=Alberta |page=25 |url=http://www.ai-ees.ca/media/6860/1919_corrosivity_of_dilbit_vs_conventional_crude-nov28-11_rev1.pdf |archive-url=https://wayback.archive-it.org/all/20120925201738/http://www.ai-ees.ca/media/6860/1919_corrosivity_of_dilbit_vs_conventional_crude-nov28-11_rev1.pdf |dead-url=yes |archive-date=2012-09-25 |accessdate=8 Mar 2014 |format=PDF |quote=the Alberta systems (with a large percentage of dilbit lines) experienced comparable internal corrosion failure rates than the U.S. systems (predominantly conventional crude lines). |df= }} 20. ^{{Citation | last = Dettman | first = Heather D. | date = 23 Oct 2012 | title = Diluted Bitumen Chemical & Physical Properties | work = NAS Committee for a Study of Pipeline Transportation of Diluted Bitumen - Second Meeting | publisher = Natural Resources Canada | publication-place = Toronto, Canada | url = http://onlinepubs.trb.org/onlinepubs/dilbit/Dettman102312.pdf | accessdate = 8 Mar 2014 | format = PDF }} Dilbit has low corrosivity under pipeline conditions. 21. ^{{Citation |date=Oct 2012 | title = A Safer World Through Corrosion Knowledge: How Corrosive is Heavy Crude? | publisher = Transportation Research Board, National Academy of Sciences | publication-place = NACE Northern Area Eastern Conference, Toronto, Ontario, Canada | at = Slide 43 ("Overall Summary from the Conference") | url = http://onlinepubs.trb.org/onlinepubs/dilbit/Papavinasam013113.pdf | accessdate = 8 Mar 2014 | format = PDF | quote = Under pipeline operating conditions[, d]ilbit is no different than other crude oils}} 22. ^{{cite web|title=EPA Comment Letter - US Environmental Protection Agency|url=http://www.epa.gov/compliance/nepa/keystone-xl-project-epa-comment-letter-20130056.pdf|accessdate=19 September 2013|date=April 22, 2013}} External links
2 : Petroleum products|Bituminous sands |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。