词条 | Dirichlet's approximation theorem |
释义 |
In number theory, Dirichlet's theorem on Diophantine approximation, also called Dirichlet's approximation theorem, states that for any real number α and any positive integer N, there exists integers p and q such that 1 ≤ q ≤ N and This is a fundamental result in Diophantine approximation, showing that any real number has a sequence of good rational approximations: in fact an immediate consequence is that for a given irrational α, the inequality is satisfied by infinitely many integers p and q. This corollary also shows that the Thue–Siegel–Roth theorem, a result in the other direction, provides essentially the tightest possible bound, in the sense that the bound on rational approximation of algebraic numbers cannot be improved by increasing the exponent beyond 2. Simultaneous versionThe simultaneous version of the Dirichlet's approximation theorem states that given real numbers and a natural number then there are integers such that Method of proofThis theorem is a consequence of the pigeonhole principle. Peter Gustav Lejeune Dirichlet who proved the result used the same principle in other contexts (for example, the Pell equation) and by naming the principle (in German) popularized its use, though its status in textbook terms comes later.[1] The method extends to simultaneous approximation.[2] Another simple proof of the Dirichlet's approximation theorem is based on Minkowski's Theorem applied to the set . Since the volume of is greater than , Minkowski's Theorem establishes the existence of a non-trivial point with integral coordinates. This proof extends naturally to simultaneous approximations by considering the set: . See also
Notes1. ^http://jeff560.tripod.com/p.html for a number of historical references. 2. ^{{Springer|id=d/d032940|title=Dirichlet theorem}} References
External links
2 : Diophantine approximation|Theorems in number theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。