请输入您要查询的百科知识:

 

词条 Dormand–Prince method
释义

  1. Notes

  2. References

In numerical analysis, the Dormand–Prince (RKDP) method or DOPRI method, is an explicit method for solving ordinary differential equations {{harv|Dormand|Prince|1980}}. The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions. The difference between these solutions is then taken to be the error of the (fourth-order) solution. This error estimate is very convenient for adaptive stepsize integration algorithms. Other similar integration methods are Fehlberg (RKF) and Cash–Karp (RKCK).

The Dormand–Prince method has seven stages, but it uses only six function evaluations per step because it has the FSAL (First Same As Last) property: the last stage is evaluated at the same point as the first stage of the next step. Dormand and Prince chose the coefficients of their method to minimize the error of the fifth-order solution. This is the main difference with the Fehlberg method, which was constructed so that the fourth-order solution has a small error. For this reason, the Dormand–Prince method is more suitable when the higher-order solution is used to continue the integration, a practice known as local extrapolation ({{harvnb|Shampine|1986}}; {{harvnb|Hairer|Nørsett|Wanner|2008|pages=178–179}}).

Dormand–Prince is currently the default method in the ode45 solver for MATLAB and GNU Octave and is the default choice for the Simulink's model explorer solver. A Fortran free software implementation of the algorithm called {{mono|DOPRI5}} is also available.[1]

The Butcher tableau is:

0
1/5 1/5
3/10 3/40 9/40
4/5 44/45 −56/15 32/9
8/9 19372/6561 −25360/2187 64448/6561 −212/729
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656
135/3840500/1113125/192−2187/678411/84
35/384 0 500/1113 125/192 −2187/6784 11/84 0
5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

The first row of b coefficients gives the fifth-order accurate solution, and the second row gives an alternative solution which, when subtracted from the first solution, yields the error estimate.

Notes

1. ^See http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f

References

  • Software implementation in MATLAB: https://www.mathworks.com/help/matlab/ref/ode45.html
  • Implementation in GNU Octave: https://octave.org/doc/interpreter/Matlab_002dcompatible-solvers.html#Matlab_002dcompatible-solvers
  • Implementation in Python (programming language) : https://web.archive.org/web/20150907215914/http://adorio-research.org/wordpress/?p=6565
  • {{Citation | last1=Dormand | first1=J. R. | last2=Prince | first2=P. J. | title=A family of embedded Runge-Kutta formulae | doi=10.1016/0771-050X(80)90013-3 | year=1980 | journal=Journal of Computational and Applied Mathematics | volume=6 | issue=1 | pages=19–26}}.
  • {{Citation | last1=Dormand | first1=John R. | title=Numerical Methods for Differential Equations: A Computational Approach | year=1996 | publisher=CRC Press| location=Boca Raton| isbn=0-8493-9433-3| pages=82–84}}.
  • {{Citation | last1=Hairer | first1=Ernst | last2=Nørsett | first2=Syvert Paul | last3=Wanner | first3=Gerhard | title=Solving ordinary differential equations I: Nonstiff problems | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-3-540-56670-0 | year=2008}}.
  • {{Citation | last1=Shampine | first1=Lawrence F. | title=Some Practical Runge-Kutta Formulas | year=1986 | journal=Mathematics of Computation | volume=46 | issue=173 | pages=135–150 | doi=10.2307/2008219 | jstor=2008219 | publisher=American Mathematical Society}}.
{{DEFAULTSORT:Dormand-Prince method}}

2 : Numerical differential equations|Runge–Kutta methods

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 17:12:31